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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
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We compare the theoretical results of an explicit one loop calculation of the critical behavior of the sound
propagation in pure liquids near the gas-liquid critical point, which has been derived within the field-theoretic
renormalization group formalism, with experimental date’ite, “He, CO,, SF, and Xe. The nonuniversal
initial values of two dynamic model parameters, which are necessary for the calculation of all theoretical
expressions, are determined by a fit of the shear viscosity at zero frequency in a small temperature region. The
static quantities appearing in the theoretical expressions are taken from experiment. With these two dynamical
initial values the temperature flow of the dynamic model parameters is completely determined. The sound
attenuation and the sound velocity at arbitrary frequency as well as the thermal conductivity or the thermal
diffusion coefficient may be calculated without any adjustable parameter. The parameter free predictions are in
very good agreement with experimental results. This also holds for scaling plots of the reduced attenuation and
dispersion taking into account the nonasymptotic behavior of the dynamic 58a&63-651X%97)04712-(

PACS numbe(s): 62.60:+v, 64.70.Fx, 64.60.Ht, 05.70.Jk

[. INTRODUCTION pressions. The remaining hydrodynamic coefficients at zero
frequency as well as at finite frequencies may then be calcu-
In the first part of the present worl] (referred to as lated without any additional parameters. This program is
paper | in the following we have derived theoretical expres- quite generally applicable and has been first developed for
sions for several transport coefficients within an extension othe critical dynamics near the superfluid transitisee the
the dynamic model H including fast sound modes. Model Hreview[5] and[6]).
has been introduced by Siggia, Halperin, and Hohenf#&rg Our detailed analysis of the theory is restricted to those
to describe the effects of the order parameter fluctuations oliquids for which measurements of several transport coeffi-
the dynamics of the slow heat and shear modes in liquidsients are availabléi) for the determination of the back-
near the critical point. The extension allows the calculationground parameters an@i) to test the predictions of the
of these effects on sound propagation. For the calculation aheory. Especially for itenfi) one needs data in an adequate
the critical behavior of the thermal conductivity and the accuracy and over a sufficiently large region of temperature
shear viscosity it is sufficient to consider the dynamicalfurther away fromT.. So far only asymptotic scaling func-
equations for the entropy density and the transverse mometions have been considered in the comparison with experi-
tum density. For the calculation of the sound mode one hament. After first attemptg7,8], Ferrell and Bhattacharjee
to add the equations for the mass density and the longituding®,10] have found within a mode coupling theory agreement
momentum density to model [8,4]. Within the field theo- of experiment with their asymptotic results. However, only
retic renormalization group theory we have derived expresthe ultrasonic attenuation in one wavelength at the critical
sions for the shear viscosity, the thermal conductivity, thepoint of pure fluids was explicitly present¢dO]. Very re-
sound velocity, and the sound attenuation valid in a temperacently a comparison with an asymptotic two loop calculation
ture region from the transition temperatufg to the back- (with adjustable frequency scale and scale of the reduced
ground region(where the transport coefficients behave ana-attenuation and dispersiprhas been performefill]. We
lytically). We also calculated the sound mode transportake into account nonasymptotic effects in the transport co-
coefficients at finite frequencies. efficients and the measurements indeed show these effects in
The aim of this work is to compare the theoretical expresthe experimental region. For the sound modes one may in-
sions for the hydrodynamic transport coefficients with theirtroduce scaling variables, not necessarily in the form of
experimental counterparts and to locate nonasymptotic efasymptotic expressions like the characteristic temperature-
fects. Here we concentrate on the critical sound propagatiordependent frequencyl2], and calculate scaling functions
the shear viscosity will be considered in a future work. In theeven in the nonasymptotic region.
comparison with experiment some quantities have to be Recently much progress has also been made within mode
taken as input in the theoretical expressions; other parts deoupling theory concerning the transport coefficient shear
pend on the renormalization group calculation. So we haveiscosity and thermal conductivity13]. Mode coupling
two sources of uncertainties in our predictions on the experitheory calculates the critical part of the transport coefficients
mental side as well as on the theoretical sidgy., loop ex- using an ansatz according to the dynamic scaling theory,
pansion. The experimental information about static thermo-whereas in our approach, presented in paper |, the back-
dynamic derivatives and one hydrodynamic coefficient aground values of the transport coefficients are included. We
zero frequency is sufficient for the determination of all dy- note that the mode coupling result mentioned includes also
namical background parameters entering the theoretical exhe wave vector dependence of the nonhydrodynamic region.
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The paper is organized as follows: In Sec. Il we write and the transverse momentum density. In the thermal diffu-

down the one loop expressions of the thermal conductivitysion also the static vertex functidn,, appears. All quanti-
the shear viscosity at zero frequency in a form suitable fotjes mentioned depend on the relative temperature distance
use in the comparison with experiment. We also need th?=(T—Tc)/Tc to the transition temperatu®. . In one loop

solution of the corresponding flow equations for the two in-orger the expressions for the transport coefficients reduce
dependent dynamic model parameters appearing in theggin (.6.7) to

transport coefficients. In Sec. lll we summarize the results of
the model on the sound velocity and the sound attenuation L 1

derived in paper |. The one loop expressions as a function of n(t)= RT ‘2(t))\t(t)[ 1-
the reduced temperature and the frequency, where static

model parameters are replaced by experimentally measurable 2
thermodynamic derivatives, are given explicitly. Further we D (t)=§2(t)l“(t)[1— ft(t)} 2.5
discuss the matching conditions that connect the flow param- T 16 | '

eter with the reduced temperature. In Sec. IV we determine

the static parameters appearing in the model Hamiltoniath Egs.(2.4) and(2.5) three temperature-dependent dynamic
from experimentally measurable quantities. The method iparameterd’(t), \((t), and f,(t) appear but only two of
quite analogous to the one used at theransition in “He  them are independent. Choosifigt) and f,(t) as indepen-
[14] and *He-*He mixtureq 15]. In Sec. V we determine the dent\(t) is determined by invertingl.5.4):
dynamical background parameters by fitting experimental

shear viscosity data over a restricted temperature interval in g%(t)

the backgroundapart from one example where we use the ()= W
thermal diffusion coefficient For some liquids we then (T

show the predictions for the thermal diffusivity or thermal From (1.4.23 one can see that the mode coupliggenor-

conductivity. Finally we compare our predictions with the malizes only in a trivial manner, therefore the solution of its
measurements of the sound velocity and the sound attenUﬁ— Ty in . _—
ow equation is of the simple forrtin d=3)

tion. In Sec. VI we calculate the nonasymptotic scaling func-
tions and compare them with the reduced dispersion and at- a0

i i i () =Ag%(xl) "% 2.7
tenuation. Some concluding remarks close this paper. g d g. -

2
ft(t)}’ 2.4

36

(2.6

As discussed in paper | we choose the wave numband
the connection between the flow paramétand the reduced
temperature as

Il. SHEAR VISCOSITY AND THERMAL CONDUCTIVITY
AT VANISHING FREQUENCY

In Eq. (6.6) of the preceding papé¢fd], abbreviated as Eq. . .
(1.6.6), we have derived the theoretical expressions of the k=&, 1=&& (1). 2.9

shear viscosityy, . . . .
i The geometrical factoA, at three dimensions i&;=1/44r.

o 1 Inserting EQ.(2.8) and the unrenormalized mode coupling
ﬂ(t)=ﬁ 2OMD[I+HEAEMD] (2.)  (1.2.7) into Eq. (2.7 the temperature dependence @fin
d=3 reads

with T the temperature anR the gas constaritve always

takeT=T, in the calculations From the thermal conductiv- g(t) = RT £32(1) 2.9
ity « at vanishing frequency one obtains the thermal diffu- VAN, ' '

sion coefficient
Inserting Eqs.(2.6) and (2.9 into the shear viscosity2.4)

D(t)= kr(t) 22 Ve get the final expression used in the following:
pCp(t) ,
_ _ . y —  RT &n [ f®
with the densityp and the isobaric specific he@(t). In- n(t)= 47N, f2(t)F(t)[1_ 36 | (2.10
t

serting(l.6.5) for the conductivity we get

R - - The flow of the remaining two parametdrsandf, is deter-
Dr() =& (IO 1+ CAEMN]. (23 ined by(1.4.36 and (1.4.40. With Eq. (2.8) the flow pa-

Both transport coefficients are proportional to the inverser‘r’mmter may be replaced by the reduced temperature. Insert-

squared correlation lengtfand the corresponding Onsager ggugggngrfreloow functions (1.6.14) the resulting flow
coefficients\; andI". The perturbational contributions are q

contained in the functiong; andG, which depend on the set dr 3

of couplings{ = ()} ={y4(t),u(t),fi(t)}. ¥4 is the coupling —=—& ) E T (D) (2.1
between the order parameter and the density fluctuations in- dt 4

troduced in(I.2.140) andu is the fourth order coupling of the a1 19

correspondingg® model (1.2.18). f; is the mode coupling —t_§§l(t)g'(t)ft(t)(l—ﬂftz(t)), (2.12

parameter(1.5.4) between the order parameter fluctuations dt
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where we have introduced the derivatigé(t)=d¢/dt. In TABLE |. Critical parameters of several fluids.
this form one recognizes that the solutions of E@sl1) and — .
(2.12 reach constant values in the background because a¢fiquid o (A) Te (K) pc (g/cm?)
g’(t).zo. The equations are easily integrated and have th%2H6 18 305.33 0.2065
solutions *He 2.7 3.310 0.0415
“He 2.0 5.190 0.0696

18/19

(=T 19f3§(t)[1+ E(to)[ 24 1 213 e 1.9 289.73 1.110
0| 24£(ty) L £(t) \19]:3 P co, 1.6 304.13 0.4678
SFg 2.0 318.69 0.730

2 &(ty)| 24 -t
ff(t)=£[1+rt‘))(@—1”, (2.14

whereasf2(t) reaches its fixed point valug* = 2. Thus the
different asymptotic amplitudes of the shear viscosity and
with the initial conditiond’(to) =I'p andf(to) =fo att=to.  the thermal diffusion coefficient are determined &y and
Expanding Eq(2.14 in the asymptotic region leads to the T, _according to Egs(2.3) and(2.10, but not byl'y andf,,
approximation by the first transiefgxponeniw;=1 in one separately.
loop ordey The initial values of the Onsager coefficiehg and the
mode couplingf, may be found by fitting the experimental
f2(t) = 24 1— fto)[ 24 _ 1. (2.15  data of one of the two hydrodynamic coefficient®r D+ by
! 1 (1) 19f§ the corresponding theoretical expression over a sufficient
nonasymptotic temperature inter@ order to getf,). The
The nonuniversal amplitude of the transient is fixed by thesecond hydrodynamic coefficient then can be predicted with-
initial valuest, andf(z). However, this approximation is re- out any further experimental input.
stricted to a certain region near the fixed pais¢e for an For the calculation of the thermal conductivity from the
example Fig. b dynamic model one needs according to E@s2) and (2.5)
Inserting the solution$2.13 and (2.14) the temperature the isobaric specific he&@p(t) and the mass densipy. The
flow of the thermal diffusivity(2.5 and the shear viscosity mass density is a smooth function of the temperature and
(2.10 is completely determined. All we need at this stage areherefore may be replaced in the considered narrow tempera-
the two initial valuesl'y and f, and an explicit expression ture region neall . by the critical densityp.. BecauseCp is
for the correlation lengtf(t). The temperature dependence not directly measurable in experiments it is necessary to re-
of the correlation length in general does not follow thelate it to measurable thermodynamic derivatives. Details
asymptotic power law but may include corrections to theconcerning the explicit calculation &p from experimental
leading terms in the crossover region to its constant backdata are discussed in Sec. IV.
ground valueé,. It would be worthwhile to measure the
explicit crossover temperature dependencg(of in order to
perform the analysis in the background properly. However,
lacking more detailed experimental information we will use Let us now turn to the sound attenuation and the sound

Ill. SOUND ATTENUATION AND SOUND VELOCITY

the asymptotic expression velocity and summarize the results of paper I. The sound
B attenuationa(t,w) is related to the sound diffusion coeffi-
§(t) =&t (216  cientD, and the sound velocitg by
which seems to be sufficient in the temperature region 2
_1 . . . .
t<10 " and with respect to the uncertainties of other physi- a(t,w)= ———Dg(t,w). (3.
cal quantities entering the transport coefficients. The value of 2c(t,w)

the universal critical exponent=0.63[2] has been experi-
mentally confirmed for several liquid46]. Thus we need A closer examination of the magnitudes of the different fluc-
for the calculation of the shear viscosity and the thermatuation contributions to the sound velocity and the sound
diffusivity the knowledge of three nonuniversal parametersdiffusion shows that the contributions of the thermal conduc-
&0, I'o, andf. The amplitude of the correlation lengég has  tivity and the bulk viscosity(1.5.23) are negligible compared
been determined experimentally for several fluids, and iso the contribution related to the frequency-dependent
listed together with the critical temperatufg and the criti-  ($?#?) correlation functior(1.5.20) in the asymptotic region
cal densityp for the liquids considered in the following in [3]. In the background, however, only these neglected terms
Table I. For a comprehensive overview on experimental retead to a finite background value db (t,0=0) [see
sults in several other liquids sgd6] and the references (1.6.26)] and to the finite(hydrodynami¢ background value
therein. of the attenuation. Usually this background value is already
In the asymptotic region the order parameter Onsager casubtracted in the experimental presentations and therefore we
efficient obeys a power laW(t) =T &~ (1% with the am-  only consider the leading fluctuating part of the sound at-
plitude tenuation, which reaches zero for all frequencies in the back-
18110 groun.d._ .Th.e sound velocity reduces to the adiabatic com-
r -1 (Efzt”) (2.17 pressibility in the backgrounfsee(1.6.19]. Thus we may
as™— = 0] p4°0%0 ’ ' simply write
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) ) 1 ) Equation(3.11) includes the Onsager coefficiefi{l). With
cs(tw)=RECs(t,0)], Dy(t,w)=——Im[C(t,w)], (32 the initial conditionl from the viscosity fit in the preceding
section and the flow equatiaf2.11) we know the Onsager

with the complex coefficient? given by[see(1.5.20)] coefficient as a function of the temperature distaricet
=0, where we have introduced the bar to avoid confusion
5 ajaq(ggll)Gcz(I) with the temperature distancdeat finite frequency. A given
Cs(tw)= . 3.3 temperature distance at finite frequency corresponds to a

1+ [va(D/ag]F (), w() {E(H})

The e-expanded one loop expression

certain valud (t,w). The same value of the flow parameter
of ON the other side may be written as an effective temperature

Fo@(),w(l),{Z()}) is [see(l.5.6) and (1.5.18)] distancet at w=0 by the relation2.8) | =¢¢ *(t) [this
_ only works whené( t) is a bijective function, which is the
Fol®,wl){EMD}D case for the analysis performed héter]]. Therefore it is
1 2 [vz_ vl sufficient to know the Onsager coefficieh(t) for the
=" alv0. Inv + v+—v,[zlnv’_ ;'”U+ - B4 =0 temperature scalghe same holds for all other static

and dynamic parameters of the magdéfia Egs.(2.8) and
with (3.12) all model parameters are known as a function af
arbitrary frequencies. Inserting E(.8) into Eq. (3.11) the

v(l v(l ;
oo ()= (T)i (T) Fiw(l). (3.5 two temperature scales are dlrzectly related by
20

From (1.5.3) the temperature paramete(l) and the fre- £+ It )> =£%(1). 313
guency parameten(l) are

) The above equation allows one to calculate for each tempera-

o(l)= &) w(l)= ® (3.6 ture distance at finite frequency the corresponding effective
(&5 2T (1) (&, 14 ' temperature distancé at w=0 at which the values of the

model parameters have to be known. Because the correlation
The calculation of the static couplingé(l)/aq will be de- length is a static quantity, it has to be the same function of
scribed in Sec. IV. Finally frondl.2.7), (1.4.36), and(1.2.25  the temperature distance independent of the frequency,

we have for the parametef(l) the expression which means that we may write analogous to E2.16
| E(t)=¢&t 77 in the asymptotic region. Inserting in Eg.
c?(1)=(RTp)A(& 1) 52, el 4, (3.7 (3.12 we get
The parametec renormalizes with a static renormalization 8y ggw 2 —5»
factor Z,, which may be eliminated using the static correla- [ rol - e 313

tion it function (1.4.18. From this relation it follows that

.20 o In Fig. 1 the functiont_(t), calculated by inversion of Eq.
7 Lalt (@X0 g I'aq(€ " 7q,U) _ 3.8 (3.13 at fixedw, is shown at several frequencies. Approach-
q f(s)(y (,u(l)) ing the critical temperature at finite frequencieés~0), the
974 corresponding effective temperature distance at zero fre-
Inserting(l.2.17) for the unrenormalized vertex function and quencyt becomes a constant. Thus all static and dynamic
(1.4.19 for the amplitude functions we get parameters that are functions of the flow parameter also turn
) © into constant values af,. The temperature distandeat
1+ [yg(D/ag]F(u(l)) which these parameters cross over to constant values de-
aq(doYo)c pends on the frequency.
With the solutiont (t,w) of (3.13 the temperature and

The unrenormalized correlation function in 8.9 may be  frequency parametdB.6) can be rewritten as
replaced by the corresponding thermodynamic derivative us-

Z, T (0 l= (3.9

ing Eq.(1.2.14). With Eq. (3.9 the parametef3.7) turns into — 21 . @
U[t,t]: o W[t]:fél_ (3.19

RTp P 7q() & t] 216t ]
A)=——(& )" 6( ) 1+ ——FPu)|. 310 o .

aq ap) aq Inserting into Eq«(3.3) finally we get

The flow parametel, now considered at finite frequen- C(t, )= f [t_]
cies, is a function of the temperature distanand the fre- "
guency w. It is determined by the matching condition . .
(1.2.29 y 1+ (v t Vag)FPul t])
i, 20 2 . 1+ (vl tlagF ([t t W[ t1{E[ t]})
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107! e e et e rrrrrr may in principle be calculated from the corresponding flow

: E equations(1.4.8) and (1.4.9) together with the condition
(1.4.195 fixing the connection between flow parameter and
reduced temperature. However, in the region where the pa-
rameters adopt their background values, another procedure,
that finds the static parameters directly from experiment,
without using the flow equations is more appropriate. This
method has been developed and successfully used at the
transition in “He [14] and in *He-*He mixtures[15]. It al-
lows one to calculate the temperature-dependent model pa-
rameters from experimentally measured quantities by deriv-
ing relations between thé functions and thermodynamic
10_5' L functions. Equatior(l.2.14) relates the adiabatic compress-
10°® 10° 104 102 102 107 ibility to the unrenormalized secondary density correlation

t function calculated within the mod€l.2.10). To obtain a

connection to renormalized parameters one has to search for
expressions containing the correlation in which no explicit
renormalization constants appear when the renormalized
quantities are inserted. This requirement is fulfilled by the

The explicit expression of the frequency-dependent amp”_expressmns

tude functionF, (v,w,{E}) is given in Eq.(3.4). The cal-

| 10MHzZ <=

[X)

10°

E 1MHZ

- 100kHz
103 2
= F 10kHz

104 L

FIG. 1. The effective temperature distantcé) [see Eq(3.13]
as function of the temperature distancet finite frequency for
several fixed frequencies and liquids.

culation of the static couplingg,(t), u(t) and the thermo- (oplaP)* din(ap/aP)*
dynamic derivative {p/JdP),(t) at the zero frequency Ro(t) = ———=, AS(t)=—T". (4.1)
temperature scale from experimental quantities and the ex- (dpl9P), n

plicit expression of the static amplitude functibf® (u) will

be treated in the following section. ) o o
The superscript+ or — indicates whether the quantity is

taken above or below the critical temperature. The thermo-

dynamic derivatives are related to the model correlation
The flow parameter dependence and the temperature dénctions defined in(1.2.12). After a lengthy calculation

pendence respectively of the static couplings) and y(t) given explicitly in[14] one ends up with the relations

IV. DETERMINATION OF THE STATIC PARAMETERS

Ro(t) =1 [2— £g2(WIIF(u) = FP(u)] “2
Ag()  Bya(u)—[2¢42(u)— e]lFP(u)— By(u)dFP/du '
2 +
Yat) _ [2— £ye(w)]Ag (1) w3
g Bya(U)— {2 4(u) — e+ [2= {4a(W)]AG (DIF P (U) = By(u)dFE/du’ '
|
where we have introduced functions. Insertingi(t) in Eq. (4.3), one obtainsy,(t) with
the same thermodynamic functions used before. In one loop
{pa(u) =& (u) = Ly(u), order the/ functions and amplitude functions for a one com-
ponent order parameter read
Bu(u)=u[—e—27,(u)+{y,(u)]. 4.9
The ¢ functions have been defined {h4.6). F® and F® u 3
are the amplitude functions of th&’-¢? correlation function &=5. Lu=3u 4.9
above and below introduced in(.4.19). The functionB ;2
follows from the additive renormalization of thg?-¢? cor-
relation function[14] and e=4—d is the standard dimen- 1
sional parameter. Equatiof.2) allows the calculation of {4=0, Bg=g, (4.6)
u(t) from experimental quantities, because the right hand 2

side of the equation only contains functionswtalculated

within the ¢* model (1.2.18), while the left hand side is

related to thermodynamic derivatives. Solving the equation SON. 1 F(s)_§_1 4.7)
. + y — . .

for u one gets the parameter expressed by thermodynamic 4 u
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Inserting Eqgs.(4.5—(4.7) into the right hand side of Egs. 0
(4.2) and (4.3 one gets explicit expressions ofdependent ] ' ' '
functions. Z o hBﬂro:n&h[ﬁ:g]er[ﬂ]
e joldover
The adiabatic compressibility is not directly measurable §, °
in experiment; it is related to the experimental measurable =
guantities by ©
d Cyld =
B e ]
dP| ~ CpldP/ . =
S
with the isobaric specific heat & 10°F O Wallace & Meyer [19]
§ ol O fomned .
C c T/[oP 2 r7p 4.9 - T T T T T
P V+ E ﬁ o ﬁ T. ( ) ) < 925 O Behringer, Doiron & Meyer [22]
5
t
In contrast to the\ transition in*He [14] and *He-*He mix- £ 900
tures [15] where only the knowledge of the temperature- §
dependent specific heat was necessary for the calculation of ~ 875
u and yq, now in the case of the gas-liquid transition we
need the experimental information about the temperature be- 1340
havior of three thermodynamic derivatives. E 1320
For an explicit calculation ofCp, y(t), andu(t) Egs. E 1300
(4.9 and (4.8) offer two possible ways to proceed. g
S 1280 im0 i

(i) Using experimental information aboGY,, (dp/dP)+,
and (@P/dT), one may immediately calculat€p and
(dpl9P), from Eqgs.(4.9) and(4.8). From the latter quantity
also yé/aq can be calculated from Ed4.3) under the ap-
proximationu(t)=u*. This is justified since no explicitl FIG. 2. Experimental thermodynamic derivativesiHe mea-
contributions appear in the dynamic flow equatid@sll),  sured by[18,20,23 (squaresand “He measured b}19,21,24 (cir-

(2.12 and the expressions for the transport coeffici€nt$), celg, which are used to determine the static couplﬂfgaq. The
(2.3, and(3.15. fits with expressiong4.10, (4.11), and (4.12 are drawn as full

(ii) The thermodynamic derivative)p/dP),, may also be lines for *He and dashed lines fdiHe.
determined directly from sound velocity measurements at
zero frequency bya'(p/aP)U_:llcg(w:O), In this case the The critical exponents are fixed @=0.11 andA=0.54,
static parametery;/a, is completely determined by the Wwhile the free parameters; andA, are listed in Table II for
sound velocity at zero frequency. From E8.15 the sound  both liquids. In “He the same expressia#.10 has been
attenuation and velocity at arbitrary finite frequency follow used with the parametéy; chosen to match the experimen-
immediately. In order to obtaifp, which is necessary for a tal data in the background anl, kept fixed at the®He
calculation of the thermal conductivity, one needs additionavalue, because the increase in the regdierl0™> seems to
experimental information abo@, and (@p/dP); as can be be too large compared withHe [see Fig. 2a)]. Not all data
seen from Eq(4.9). of Ref.[19] have been shown since the data neare$t tare

Thus for the calculation of the critical sound propagationnot consistent with a power law and an inclusion of the data
we need either experiments on three temperature-dependdpglowt< 10> shown here would lead to a value @ 0.15.
thermodynamic derivatives or measurements of the sound The isothermal compressibility has been measured by
velocity at zero frequency in the critical region. Fie and ~ Wallace and Meyef20] for *He and by Roacf21] for “He.

“He the three thermodynamic derivatives,, (dp/dP)+, In both cases the data may be represented by a simple power

and (9P/JT), are available. In both liquids measurements oflaw
the zero frequency sound velocity also exist, which offers the
possibility to compare the results of the two methods for a 1/dp _
:FTt y, (411)
-

10° 10* 10° 102 10"

calculation of the critical sound velocity discussed above. pcl oP

The isochoric specific heat in the cr;tical region has been
measured by4Brown and Mey§t8] for .He .and by Mold- where the effective critical exponent is chosen toysel.19
over[lg] for H_e. The data are shqwn in Fig(e In.order in the temperature region considered. This value is different
to obtain a contlnuqus .repre.sentatlongof the exp_er_|mental "Srom the expected asymptotic universal exponent 1.24 due to
sults we use th? fit given 18] for “He containing the nonasymptotic effects. The amplituffg is determined by a
correct asymptotic behavior fit, which is shown in Fig. &) for both liquids. The param-
etersI'; obtained are listed in Table [R2]. Finally the ther-
modynamic derivative {P/dJT), is found from measure-
ments of the equation of state performed by Behriregeal.

1+
CV: T

t
t LA+ AN, (4.10

c
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TABLE Il. Results for the fit parameters of Eq#.10, (4.11), and(4.12 in 3He and*He. The corre-
sponding curves are shown in Fig. 3.

A A, rs a, a; a, B
(J/mo) (J/mo) (1/Torn (Torr/K) (Torr/K) (Torr/K) (Torr/K)
3He 25.11 2.6 2.2810°4 888.9 —-1294.1 0.0 1289.0
“He 48.0 2.6 7.5810°° 1289.2 —5190.5 4505.0 4085.7

[23] in 3He and by Kiersteadi24] in “He. The thermody- available obtained in an asymptotic theory by higher order
namic derivative is a smooth function of the temperaturecalculations. In contrast the exponentdescribing the tem-
reaching a finite value af.. In order to get a continuous perature behavior of the isothermal compressibility in the
representation of the data in the considered temperature rexperimentally accessible temperature region has been re-
gion we simply parametrize the thermodynamic derivativeplaced by an effective one. The asymptotic region of that
with guantity obviously lies in a temperature region so close to
the critical point that it is not reached by experiments.

JP
7

=ag+at+a,t?+ Bt (4.12
p

V. COMPARISON OF THE TRANSPORT COEFFICIENTS
WITH EXPERIMENT
The last term in Eq(4.12 contains the correct asymptotic
behavior of ¢P/dJT),, at the critical isochorg23]. The quan- . o
tity itself is finite at the critical temperature but the tempera- We now determine the initial values of the Onsager coef-
ture derivative diverges with the exponent of the specifidicientI'y and the mode couplin. It is suitable to fit for
heata in the asymptotic limita, is determined by the value that purpose the experimental measured shear viscosity with
of (9P/dT), at T [23]. The parametera;, a,, andB are Eqg.(2.10. Together with the results from statics discussed in
found by a fit shown in Figs.(2) and 2d), and the param- the previous section the remaining transport coefficients like
eters obtained are listed in Table IIl. The isobaric specifi¢hermodiffusion coefficient or thermal conductivity as well
heat can now be calculated from the relatidrd) by insert- as the sound velocity and the sound attenuation are then
ing the fits(4.10, (4.12), and(4.12 for 3He and“He. determined without any adjustable parameter. The reason for
Inserting the three fits into Eq&4.8), (4.1), and(4.3) we  choosing the shear viscosity as the quantity to be fitted is the
obtain the static coupling/a, shown in Fig. 3 as dashed absence of any temperature-dependent static function in Eq.
lines for *He and*He. On the other hand from sound veloc- (2-10, which assures that the dynamic coefficiefigsandf,
ity measurements ifHe [12] and in *He [25] we may di- ar.e.calcglated from a pure dynamic function §v0|d|ng any
rectly calculate {p/aP), from the experimental values MiXing with static eff_ects apart from the corre_latlon length
shown in Fig. 4. The experimental data may be representedowever, the amplitudet, influences the fit parameters
by a fit, shown as full lines in the same figure, with the found. As already mentioned the crossovegdb its back-
asymptotic power law including first order corrections in theground valueg, would also be of relevance. For most of the

A. Background parameters and thermal mode

nonasymptotic region, which reads liquids the shear viscosity in the critical region is available
(%) =t7(g1+gatY). (4.13 O
7 0.8} A
—— from sound velocity
The parameterg; and g, obtained by a fit in the region [ from thermodyn. derivatives 1
10 °<t<10"! for %He and 10%<t<10"! for *He are 07} co, // 1
listed in Table IIl. I Xe SE. )
There are also measurements of the zero frequency soul & 0.6 “He \6,
velocity in the critical region for Xg26], CO, [27], and e 05' v _
SFg [28]. The resulting experimental derivativédd/JP),, ) 4
and a fit over all data with Eq4.13 are also shown in Fig. 04 | ]
4, the parameters obtained are given in Table Ill. Inserting | \/‘ |
(dpldP),, from the sound velocity into Eq4.3) we get the 0.3 e 3He

static couplinQSyé/aq for the three liquids shown in Fig. 3 as
full lines. In the limitt—0 all curves reach a fixed point
value that is different from the value obtained in one loop t

theory although we have used the one loop expressions for - ki, 3. A comparison of the static coupling/a, calculated
functions. The reason for this behavior is, that we have fitteqyith £q. (4.3 for several liquids. The two dashed lines are calcu-
the thermodynamic derivatives with exponents differentiated with Eq.(4.8) inserting the thermodynamic derivatives 10,
from the one loop exponents, which represent the experimen4.11), and (4.12 for 3He and“He. The full lines are determined
tal data in the considered temperature region in a more adrom the adiabatic compressibility, which has been calculated from
equate way. Fowr and v and A we used the best values the zero frequency sound velocity file, “He, Xe, CO,, and SK.
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TABLE lll. Results for the fit parameters of E4.13 for sev-

107 m

o Roe&Meyer[12] o Ros, Wallace & Meyer[24] ] eral liquids. The corresponding curves are shown in Fig. 5.
A Garland & Williams {25] ¢ Garland [26) 1
v Schneider [27] g g
= - 10° 10°
5 % e Torr gz[ cm® Torr
|._
“ He 1.331 -0.675
% “He 1.113 ~1.344
o Xe 0.773 -2.872
e CO, 0.292 —-0.327
_8- : SFg 0.418 —0.286

N R e e rather than the thermal diffusion coefficient or the thermal

10° 10* 10° 10?2 10 L e o
conductivity. The thermal diffusion coefficient is in most

t cases less suitable for the determination of the initial param-

FIG. 4. The adiabatic compressibility determined from zero fre-faters because of the stronger tlemperature dependence mask-

quency experiments ifHe [12] (squarel “He [25] (circles, Xe ing the crossover behavior to the background.

[26] (up triangle$, CO, [27] (diamond$, and SF, [28] (down tri- In ethgne(CZH 6) b(_)t_h the shear viscosity29)] and_the
angles. The corresponding fits with expressigh13 are drawn as t_hgrmal diffusion coefficier{t30] have be_en _measure_(_j in suf-
full lines. ficient accuracy for an analysis. The initial conditions ob-

tained from the shear viscosity at the temperature distgnce
are listed in Table IV although we do not present the fit of
the shear viscosity and the prediction of the thermal diffusion
coefficient. This has already been showr 1] (see Fig. 2
there. For comparison with other liquids we show in Fig. 5
the corresponding flow of'(t) and fi(t). Analogous to
C,Hg we have fitted the experimental results of the shear
viscosity in 3He, “He [32], Xe [33], and CQ, [34] in the
temperature region indicated in Fig. 6 with EQ.1). The
resulting fits are shown in Fig. 6 as full lines and the initial
values of'y and f, obtained are given in Table IV. The
flows of the dynamic parametelr{t) andf(t) are compared

in Fig. 5. Both the Onsager coefficient and the mode cou-
pling are in the experimental region more or less different
. from their asymptotic behavior, most pronounced’ite and
T R BT PR less pronounced in Xe.

12 ——rr——— No shear viscosity is available in gFand therefore we
use the data of the thermal diffusion coeffici¢B0]. The
asymptotic temperature dependence of the thermal diffusion
constant is given by a power lalyt~t*" %", The one loop

value of the dynamical critical exponent,=15=0.947,
which is somewhat larger than the two loop vakye=0.916

[2]. This leadqi) to a flatter decrease in the thermal diffusion
coefficient andii) a flatter increase in the shear viscosity in
one loop order. However, since we only know the non-
asymptotic amplitudes in one loop order we also keep the

10—155 LR | LR rorrTTT

11

107°

oL

I [cmY/s]

1 0-18 L

1.0

0.8

—

[P,

0.6

0.4 |- approximation by transient —» one loop order results for the flow equations and exponents.
TR RN SR ETT L PR v This deviation is seen in Fig. 7, where the fit region is again
10° 10* 10° 10? 10" indicated by the bar. A similar deviation has been observed

t in the shear viscosity of CQin the regiont<10 ° not

shown here. The asymptotic divergence of the shear viscos-
ity t™*»" is weaker because of,=0.053 in one loop order

FIG. 5. Solutions of the flow equation®.13 and (2.14) for _ X . )
several liquids where the initial valuéy andf, have been found andx, =0.065 in two loop order. In He this effect is masked

from fits of the shear viscositisee Fig. 6 except for SFwhere we by the gravitation. One might suggest t.o take in_ our analysis
fitted the thermal diffusion coefficient, see Fig. The fit of the ~ the two loop result for the flow equations. This, however,
shear viscosity of GH4 has already been shown [i81]. The cor- would lead, because of the change in the fixed point value of
responding initial values are listed in Table IV. Féde we also the mode coupling{, to an inconsistent value of the Ka-
show the flow off, including only the first transierfiaccording to ~ wasaki amplitudeR [7] known only in one loop order
Eg. (2.19]. The restriction of this approximation to the near (R*=1.056[31]). Its nonasymptotic form enters the theory,
asymptotic region is clearly seen. when the shear viscosity is related to the thermal diffusion
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TABLE IV. Initial values att, of the dynamic model parametdrg andf, together with the asymptotic
amplitudel’ 5 of I'(t) according to Eq(2.17) and the crossover temperatugeat o=1 MHz.

cm’ cm’

Liquid t FO[“’BT fo Faﬁ{lowT 102t (1 MH2)
CHe 01 3.87 0.576 0.276 0.87
*He 0.1 211 0.345 0.057 43
iHe 0.1 0.83 0.495 0.044 2.7

Xe 0.1 0.75 0.811 01 1.6
co, 0.03 2.41 0.763 0.143 0.95
SF, 01 2.56 0.674 0.246 11

7(t) =kgTR(t)/[D1(t) £(t)] according to Egs.(2.5 and

method (i) explained in the preceding section. The slight

(2.10. Our asymptotic one loop value is also consistent withminimum in the prediction for’He is an artifact resulting

the optimal value adopted in mode coupling theft$].

Now all dynamic parameters are determined and we ar
able to predict other transport coefficients. FosHi we
have compared with the thermal diffusion coefficiéaee
Fig. 2 in[31]) and good agreement has been found3He

from the overcompensation of the decreasel'dt) and
£p(t) [see the expression®.5 and (2.2)] due to the in-
crease of¢ 2(t) used in its asymptotic form in the region
near the background, which is too strong. One should also
note that a further extrapolation into the asymptotic region is

and *He the thermal conductivity has been measured in théot possible because here we usedGgran effective expo-

critical temperature region by Pittmagt al. [35] (*He) and
by Acton and Kellne36] (*“He). The experimental results
are shown in Fig. 8. With the initial values given in Table IV
we predict the thermal conductivity with EqR.2) and (2.3
for both liquids(full and dashed lines in Fig.)8The isobaric
specific heat has been calculated from E4.9) using

nent of y=1.19 butyr=0.63. It would be worthwhile to have
more accurate static data for the isothermal compressibility.
For CO,, SFg, and Xe we have no complete set of data
available. Although in CQ the thermal conductivity has
been measured one needs the static thermodynamic functions
for a calculation ofCp(t). No measurements of the thermal
conductivity or thermal diffusion in Sfand Xe are known
to us.

20 ———rrrrr—— T ——r———rr As discussed in Sec. Il the flow of all model parameters
O Agosta etal. [31] a) | at finite frequency is calculable from the corresponding flow
n; 18 Fit region at zero frequency. Using E¢B.13 together with the flow of
= i - ] the Onsager coefficielt(t) just determined we calculated at
"""" 5 # each temperature distantéor finite frequency the effective
R e — temperature distance(t) via the matching conditioi3.13.
_ . O Agostaetal. [31] b)1 Since the dynamic nonasymptotic Onsager coefficigt)
3 26 . enters the result ot is different from what one would get
=~ i . from the matching condition in its asymptotic form. The dif-
24 He Fit region ference between the asymptotic matching condition and the
— S nonasymptotic one has been discussefBif|. For that pur-
600 | A Strumpfetal. [32] C)
o 560 - 10? ————rr————rr——— g
= L Xe - é | 5
€ 520 Fit region ] SF
e — e Al o Jany & Straub [29]
400 £ v Berg & Moldover [33] d) | 10* ¢
S 360 . ‘:\é i
= [ Fit region v Y < 10‘55- 3
320 = T B ETTI BT S—r— - F ]
10° 10* 10° 102 10" Q
t 6
. . . 107 F 3
FIG. 6. Fits of the shear viscosity data &fle, “He [32], Xe Fit region
[33], and CQ, [34] with Eqg. (2.4). The temperature intervals in ) i el

which the fits have been performed are marked by a horizontal ba
The deviation of the fit ifHe and*He belowt<10~* indicates the

onset of the influence of gravitation on the measurements not take..

into account in this analysis. For Xe and ¢@is influence is less
pronounced.

103 107 10

t

10*

FIG. 7. Fit of the thermal diffusion coefficient data of SF30]

with Eq. (2.5).
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\‘\,\ o *He: Pittman, Cohen & Meyer [35]
.. . o “He:Acton & Kellner [36]
< 10°}
E -
L
2
gr—
------- used by Roe & Meyer [12]
10_4 . I“““I-4 . ...““IS . ...““IZ ‘ “.“”1
10° 10 10° 10° 10
t
FIG. 8. A comparison of the experimental thermal conductivity 3 i 3MHz
in 3He [35] (squaresand in “He [36] (circles and predictions of ' Xe]
the theory; the full line fo’He and dashed line fatHe are calcu- 5L i
lated from Egs.(2.2) and (2.5 without any free parameter. The a% A
dashed-dotted line is the representation of the thermal conductivity 11 .
for 3He (at that time not measurgdsed in[12] [see Eq(20) therd 0 - 1MM\
for the calculation of the scaled frequengyappearing in the non- 1085 ""1"(')4 — 163 02 10+

asymptotic scaling function for the reduced sound attenuation and

sound dispersion. t

. . . FIG. 9. Adjusted sound attenuation a,(t, )
pose one may repladé&(l) at a fixed distance from the criti- = a(t,w)/a(t, 0 /2m) calculated from Egs.3.1), (3.2, and
cal point(measured in values @) by its asymptotic power (3 15 without any adjustable parameter irte, *He, and Xe(full
law behavior. The difference between the matching conditineg. t, is the temperature distance of the data point neare¥t to
tions (3.11) increases for an increasing distance from theat w,=0.5 MHz for He andw,=1 MHz for Xe. The experimental
critical point as can be seen in Fig. 6 [&7]. data are fron12] (*He), [25] (*He), and[39] (Xe).

B. Sound mode able frequencyat some temperature valgee take the tem-

For a second test of the dynamic renormalization theor erature value n_earesth)_. Diyiding Fhe sound attenuation
y the value at its normalization point we get what we call

we turn to the prediction of the critical temperature depen- di q X T q is then d

dence of the sound mode at finite frequencies. The questitj‘n juste hattengat:oaadd_ he S??e proce fure 'Sht. en On?

arises as to which extent the nonasymptotic flow, found i or our theoretical prediction. Thus apart from this normal-
ization the adjusted attenuation at other frequencies and tem-

the comparison with the shear viscosity and the therma i . . ; :
mode, influences the sound mode. One has to note the foperatures is then predicted. In Fig. 9 the comparison with the

. 4
lowing items:(i) the mode, coupling,(l) does not appear in data is shown for'He [38], *He, and Xe[39]. For SF; a

the expressions for the sound velocity and sound attenuatidfyeasurement only at one frequency is availa_ble bUt. the pre-
in one loop order according to E€B.3); (ii) the order pa- dicted temperature dependence agrees quite satisfactorily

rameter Onsager coefficieht(l) enters only via the match- with the data(see Fig. 10

: o L The crucial relation in the calculation of the theoretical
ing condition Eq.(3.11) and the definition ofv(l) Eq. (3.6), . S . .
(iii) the static couplingyy(l) between the order parameter adjusted sound attenuation is the matching condiia3,

and the mass density enters at nonzero frequency. From th\{ghich determines at which temperature distance the effective
we expect that the main nonasymptotic effects found in th emperatur e.dlstgnce crosses over to a constant \(alme.
dynamic parameters can be taken into account by using 39- . W't_hm this crossover region t_he_: sound attenuation
nonasymptotic scaled frequentsee Sec.VI beloyy whereas stops growing and bends over to its finite valueTat The

refined details depend on the nonuniversal behavior of th!?cat'on_‘)f this bendover "_5 sensitive to .the Onsager coeffi-
static couplingy, . cientI'(t) found from the fit. A rough estimate of the cross-
From Egs.(3.1), (3.2, (3.14, and (3.15 we may now Over tempera_lture can bg-found by comparing the two limit-
calculate the sound attenuation. The experimental sound ad ~ matching  conditions. At t=0 we have
tenuation is determined in terms of a signal ratio per length2e/I'(1) = (&, 1)* and atw=0 we havet”=1. Eliminating|
which is given in Neper or dB. The absolute scale of our ondeads to the estimate of the crossover temperature,
loop theory can be judged by the value of the attenuation irtc~\/2w/1“asggz, where we have used the asymptotic On-
one wavelength aT, in the zero frequency limit, which is sager coefficient and the approximatians3 andv= 2. For
0.2+ O(f2) according ta(6.4) below and(1.7.7). The univer-  the frequencies considered in Fig. 9 the same quality of our
sal value without expandsion ify will be m2a/2vz=0.27  prediction is reached whether the static coupli)@aq has
[10]. In order to be independent of this value we normalizebeen determined from the thermodynamic derivatives or
the attenuation at some frequen@ye take the lowest avail- from the zero frequency sound velocity as discussed in the
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T o ' T T T ALAL B LR A
1.0 ‘ SF, T 9| 3,  DataRoe&Meyer(12]
0.8 | J
80 |- J
I — o 0.0MHz
) )
- 06 T € 70 o 0.5MHz |
= I :J, o 1.0MHz
041 . A 1.5MHz |
- o Schneider [27] 60 x  3.0MHz ]
02} . 3 . .
S il MR
- 110 S —
0.0 e L 4 Data: Roe, Wallace & Meyer {24
10° 10* 10° 102 10" 1ol He i
t - yqzlaq from thermodyn. derivatives
FIG. 10. Adjusted sound attenuati¢same as in Fig. )9calcu- = 0r .
lated from Eqgs(3.1), (3.2), and(3.15 without any adjustable pa- E I 1
rameter in Sk (full line, w,=0.6 MH2). The experimental data are — 80 0.0MHz +
from [28]. © - 0.5MHz 1
70 | 1.0MHz -
previous sectiorfisee Fig. 3 The reason for this is the nor- 1.5MHz 1
malization of the sound attenuation data. Even at low fre- B0L 0 e i ]
guencies the effective temperature distance reached lies in 10° 10* 10° 107 10"
the nonasymptotic regime When%/aq is different from its t

universal asymptotic valugsee the remark in paper | after o .
(1.4.10]. Thus the strong dependence of the attenuation on F!G- 11. Sound velocity ifHe (data from[12]) and “He (data
this static coupling, to which it is proportional, is Weakenedfrom [25]) at several frequencies without any free parameter. The

and most pronounced at large frequencies fote (but curves are calculated from Eg€3.2) and (3.15 with the static

. 2 . . g sge
smaller than 10%), because according to Fig. 3 there th%?éjﬂgg;ﬁ; ?gi?réde:th;a\;ielzbiﬁn;i;ogwpresablllty extracted from the

difference due to the differences in the static measuremen%s
is largest.
From Egs.(3.2), (3.14), and(3.15 the sound velocity at the amplitude functions of the thermal diffusivity and the
several frequencies has to be calculated. In contrast to thghear viscosity at zero frequenfyompare Eq(1.6.7)]
sound attenuation now the results may be influenced by the 5 5
method of determining the static derivativeR/dp), . This —_ t —_ t
is shown in Figs. 11 and 12. In Fig. 11 f8He and*He the CUEN=-13 E{EH=—75 5.1
lines are calculated usin@y, (dp/dP)y, and @P/JT),,
while in Fig. 12 for3He, *He, Xe, and Sk the static deriva-
tive is determined from the experimental zero frequencyrhe frequency-dependent amplitude function of thed=3
sound velocity. One should note that the deviation in Fig.c3|culation reads
11(a) of the theoretical sound velocity ifHe calculated
from static thermodynamic derivatives is of the order of 2%
only. This can be considered as a proof of the internal con- 1
sistency of the static experimental dt8,20,23. In “He Fo(),w(h){EH==
the deviation of the theoretical results is larger thartlie 2
[see Fig. 1(b)]. One reason may be that the static thermo-
dynamic derivatives, which are necessary to determine the X
model parameters, and the sound velocity itself are measured
by different experimental groug49,21,24,2%5while in con-
trast in *He all data come from the same experimental group
[18,20,23,32,1P In Fig. 13 we present the prediction of the Performing a fit of the shear viscosity using the amplitude
sound velocity of CQ calculated from the zero frequency functionE; from Eq.(5.1) instead of thes-expanded one, the
sound velocity 27]. sound attenuation and the sound velocity may be calculated
In the theory described above we have used the standawmdth thed=3 amplitude functior(5.2). The differences are a
procedure in the calculation of the model functions. Thisgood estimate of the theoretical uncertainties at one loop
means that the flow equations are taken in their full nonlineatevel. To give an example we compare the results of the two
form, and the amplitude functions of the transport coeffi-calculations for the frequencies 0.5 and 1 MHz3He in
cients have been calculated in amxpansior[1]. Using the  Fig. 14. Whereas the experimental data of the sound velocity
method mentioned if40] one may avoid the expansion in  lie within the two theoretical results, this is not the case for
the amplitude functions by calculating them directly at di-the sound attenuation, where tlaeexpansion seems to be
mensiond=3 . This leads to somewhat different results for more favorable. However, the differences are less than 10%.

3/2 1

+—
U,V Vy—U_

v 3/2 v ?_:_/2

U4 U_

—1}. (5.2)
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Data: Roe & Meyer [12]

T
Data: Schneider [27]

.
L]

3
sl
|

'5'140 - i
2 ISF
E130[ SFe ]
120 L r=e00kHz « 600kHz |
o f=0kHz 4
110 lu ul Liesd ul .
10° 10" 10° 10* 10"
t t

FIG. 12. Sound velocity ifHe and*He (same data as in Fig. FIG. 14. Comparison of the sound attenuation and velocity cal-
11), Xe (data[39]), and SF (data[28]). The curves are calculated culated with thee-expanded amplitude functior(8.4) (full lines)
from Egs.(3.2) and (3.15 without any free parameter. The static and thed=3 amplitude function$5.2) (dashed lingsat 1 MHz in

coupling 7§/aq and the adiabatic compressibility been been ex-He. The datdcircles are from[12].
tracted from the zero frequency sound velocity.

VI. SCALING FUNCTIONS

A. Asymptotic scaling

We first consider the asymptotic limit of Eq&.2) and

(3.1). In this limit the order parameter Onsager coefficient

follows a power law,I'(1)=T,4d? 4, with ', from Eq.
(2.17) and one introduces a scaled frequegcy

200

180 |

160

100

Co,
o Garland [26]

FIG. 13. Prediction of the sound velocity in GQor different ! . s
frequencies calculated as in Fig. 12. The zero frequency data aféinction for the sound velocity and the attenuation in one
collected from[27].

w

= 6.1
2T 0 7 (

y

The matching condition Eq3.11) leads to the solution

[=t"S(y) (6.2
with the limiting behaviorS(0)=1 andS(y) = (4y)*” close

to T;. An analytic solution of the matching conditid8.11)

is possible if one takes the approximatins 3 for the dy-
namical critical exponent. This solution has been used for the
calculation of the asymptotic scaling functions. A compari-
son of the asymptotic matching linéd, »), where one uses
the asymptotic power law behavior b{t), with the match-
ing lines using the nonasymptotic solution fB(t) defini-
tively shows that the experimental data lie within the nonas-
ymptotic region in thew-t plane (see Fig. 6 in[37]).

- Therefore the application of these asymptotic results has to
£ be taken with caution.
o 140 1 Inserting Eqs(6.1) and(6.2) into the definition(3.6), the
parameters andw become functions of:
120 E

v(D=[SY17% w()=y[S(y)]~ (6.3
Then we obtain for the amplitude functioRs (y) andCy(y)
complex functions ofy, from which the asymptotic cross-
over functions for the sound veloci¥(y) [see(l.7.27)] and

attenuatiorY ,(y) [see(l.7.29] are calculated. The crossover

wavelength
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Im[C2] of F, for large values of the argumewt and would lead to
= ’77—; (6.4 a decrease to zero for both nonasymptotic scaling functions.
R (5] The correct solution of the matching condition prohibits this

decrease and the reduced attenuation reaches a constant
value (the same as the asymptotic scaling funciifor large

values ofy andy, respectively. As a consequence of the
noniterative solution of the matching condition this approxi-
mation does not lead to the correct frequency behavior in the
limit t—0 sincel = 0w in the limit y —o. Thus the
temperature dependence of the sound attenuation and sound
velocity does not drop out in this limit and the frequency
dependence is the same as in the Van Hove theonA|.
Nevertheless one may represent the data over a certain range
of y by such an approximative scaling function. In fact it

Since it has been sho'wn in our analysis of the experimenfums out that the differences in the scaling functions plotted
tal data that the behavior of the order parameter Onsagef, o experimental range are small.

were shown i 37] (see Figs. 7 and 8 thereThe last men-
tioned scaling function agrees quite well with the calculation
of Ferrell and Bhattacharjgel0]. We note that because of
the matching condition the whole range of values of the scal
ing variable O<y=<oo the scaling function is determined by
values of the one loop integral contribution dgv,w) and

F . (v,w), with arguments within the regionQv (I)<1 and
o=w(l)=<3.

B. Nonasymptotic scaling

coefficientl’ and the mode couplinfy is nonasymptotic, one

may define, instead of the functions considered above, NoNy4i4 of

asymptotic scaling functiongl2] by introducing the non-
asymptotic scaled frequency

w

Y oarme A 69

In order to compare now the scaling functions with the
3He [12] we have to fix the scale of the frequency
axis and of the ordinate. The relation of our nonasymptotic
scaled frequency to the scaled frequency used 1| is
given by the choice ofb* of that paper, which is according
to Eq.(2.5),

w

w'= = 4 .
2D1(t)E73(t)  1—fZ(1)/16

In the asymptotic limity turns intoy. Plotting the suitable
scaled attenuation in one wavelength and dispersion against
the nonasymptotic scaled frequency the sound data fall al-
most on one curvg12]. A corresponding nonasymptotic One may replacd, by its fixed point value leading to a
scaling function can be found in our theoretical approach byjenominator of 0.93. However, the thermal conductivity
solving the matching condition approximately. The approxi-ysed to fix the scale ifl2] does not represent the data mea-

(6.9

mation consists of replacing thedependence ith'(l) by t”

sured late{ 35] (see dot-dashed curve in Fig). 8'herefore

rather thant * and keeping the nonasymptotic dependence ofve shifted the reduced attenuation along fhexis to get

I' ont. For the static couplingyf]/aq its fixed point value is
taken. Ifw is small compared td' (1) £(t) ~* the solution of
Eq. (3.11) may be written as

I=t"S(y), S(y)=(1+16y*)".. (6.6)
Insertingl into the expressions for the complex coefficient
Cﬁ(t,w) we may plot the scaling functions for the reduced
attenuatior (y) and reduced dispersial{(y) [see Eqs(15)
and (16) of [12] for the definition

Im[C3(y)]

I(Y)=—mT=—— —

Y T G RGP
N REC3(0)]

Jy)=1-= — —, (6.7)
=" 50 GraEH)]

with
v(l)= =—=—=, W(|)=~y~ . (6.8
S2(y) S*(y)

The denominator imv(l) is essential for the comparison with
the data since it restricts thv(l) values used in the expres-
sion for F, to the same finite interval @w(l)<3 as the

agreement with our frequency sc@el]. A check of consis-
tency is the plot of the reduced dispersion for which the same

y scale has been used. An additional shift along the ordinate
has been performed in the reduced dispersion in order to
normalize to our function. Excellent agreement is reached
where expectetsee Fig. 15 We also plot the corresponding
asymptotic scaling functions. The differences show the un-
certainty within the theory. The nonasymptotic scaling plot
of the data has recently compared with an asymptotic calcu-
lation toO(&?) [11] and qualitative similar results have been
obtained.

The same remarks apply to tiféle [25] (reanalyzed in
[12]) and included in Fig. 15. The conclusion is that nonas-
ymptotic effects are less pronounced seen in this double
logarithmic scaling plots but our detailed analysis of Sec. V
shows that consistency of the description &f hydrody-
namic transport coefficients is possible within a nonasymp-
totic renormalization group theory only.

The nonasymptotic scaling function takes into account
only nonasymptotic effects in the frequency scale; it neglects
similar effects in the coupling/é/aq by using the fixed point
value for this coupling. These effects in the coupling are seen
most directly afT ., where the attenuation in one wavelength
Eq. (6.4) reaches a finite universal value for small frequen-
cies. At finite frequencies a nonuniversal value is observed
and this value was related to the non-asymptotic behavior of

asymptotic scaling function. The lowest order approximationthe specific hea€,(t) by Bhattacharjee and Ferr¢ll0]. In

w(l)=Yy would introduce intol (y) andJ(y) the behavior

our theory this effect is of the same physical origin and re-
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VII. CONCLUSION

We have performed a detailed analysis of the critical be-
havior of the hydrodynamic transport coefficients in a pure
liquid. The nonuniversal nonasymptotic temperature depen-
asymptotic scaling functiorifull line) uses the solutior(6.2) in dence of the She"?“ viscosity ar_ldlor thermf”" .conductlwty has
(6.3 and the nonasymptotic scaling functicdashed ling the ap- been fully taken into account in the prediction of the tem-
proximation (6.6) in (6.8). perature and frequency _dependence of the soun_d velocity and

sound attenuation. Refinements of the analysis are worth-
while and possible(i) One needs more detailed information
o ) ) ) on the experimental sidé) on the correlation lengtfespe-
lated to the deviation of the static coupling/ay, shown in cially the crossover to a constant background value would be
Fig. 3, from its fixed point valuey;*/a,. From Eq.(3.15  of interes}, (i) more accurate information on the static ther-
we calculate the ratio of the attenuation in one wavelength atnodynamic derivatives, andiii) more complete sets of
finite frequency to the value at zero frequencyTat transport coefficients. The theory can be improved by a two
loop calculation of the amplitude functioisowever, not all
integrals seem to be calculable analytically; see, ¢idl])

FIG. 15. Reduced sound attenuatibfy) and reduced disper-
sionJ(y) as function of the nonasymptotic scaled frequepcihe

N V3(X) 1+ (y'2l4ay)in2 and extended to the ordered phdtfes would, e.g., make
= q*z 2q A , (6.10  possible the prediction of the sound attenuation in the liquid
(@N)e  y3? 1+[y5(x)/4aq]in2 and/or vapor phase

A similar analysis is possible and in preparation in mix-

tures. However, it includes an additional dynamic parameter
wherex is the effective temperature distance correspondinda certain ratio of Onsager coefficientsecause of the addi-
to the finite limiting value of the flow parametkr given in  tional equation for the concentration fluctuation. This new
(1.71) and where we have us€ti7.7). We take fory(;Z/aq dynamic parame_tt_ar governs the critical enhancgmen_t of the
the experimental value 0.311 from Fig. 3. Figure 16 showghermal conductivity at zero mass current and is of impor-
our result in comparison to the experimental values given if@nce N the nonasymptotic regi¢8l,42. It also enters the
[10]. The nonasymptotics of the specific heat[0] was fréquency scale of the sound mode.
characterized by the background noncritical contribuggn ~_Noteé added in proofThe asymptotic theory has been con-
in our theory the whole experimental temperature depen§'dere(j re_cently by A. OdnuKPT(XS' F;ev. E55, ;103(1%9;)]. .
dence enters directly leading to a characteristic curve foé‘ compazlson qf our an 'Onu 's theory with sound data in
each liquid. The steeper the decrease of the specific(beat . He and"He will be published by A. Kogan and H. 'V'?yer
compressibility the stronger the increase of the curve. How-'" J. LO.W Temp. Phys. We thank the authors for sending us
ever, we expect a saturation or bending over of the curves i preprint.
larger values ok when the specific heat crosses over to its
background \(alug. Thus an improvement in agreement at ACKNOWLEDGMENT
least from this side is to expected, e.g., for Xe by more
accurate measurements of the specific heat or zero frequency We thank H. Meyer for helpful discussions and for send-
sound velocity. ing us his experimental data.
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