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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
near the critical point in liquids. II. Comparison with experiment

R. Folk1 and G. Moser2
1Institute for Theoretical Physics, University of Linz, Linz, Austria

2Institute for Physics and Biophysics, University of Salzburg, Salzburg, Austria
~Received 23 December 1996!

We compare the theoretical results of an explicit one loop calculation of the critical behavior of the sound
propagation in pure liquids near the gas-liquid critical point, which has been derived within the field-theoretic
renormalization group formalism, with experimental data in3He, 4He, CO2, SF6, and Xe. The nonuniversal
initial values of two dynamic model parameters, which are necessary for the calculation of all theoretical
expressions, are determined by a fit of the shear viscosity at zero frequency in a small temperature region. The
static quantities appearing in the theoretical expressions are taken from experiment. With these two dynamical
initial values the temperature flow of the dynamic model parameters is completely determined. The sound
attenuation and the sound velocity at arbitrary frequency as well as the thermal conductivity or the thermal
diffusion coefficient may be calculated without any adjustable parameter. The parameter free predictions are in
very good agreement with experimental results. This also holds for scaling plots of the reduced attenuation and
dispersion taking into account the nonasymptotic behavior of the dynamic scale.@S1063-651X~97!04712-0#

PACS number~s!: 62.60.1v, 64.70.Fx, 64.60.Ht, 05.70.Jk
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I. INTRODUCTION

In the first part of the present work@1# ~referred to as
paper I in the following! we have derived theoretical expre
sions for several transport coefficients within an extension
the dynamic model H including fast sound modes. Mode
has been introduced by Siggia, Halperin, and Hohenberg@2#
to describe the effects of the order parameter fluctuations
the dynamics of the slow heat and shear modes in liqu
near the critical point. The extension allows the calculat
of these effects on sound propagation. For the calculatio
the critical behavior of the thermal conductivity and t
shear viscosity it is sufficient to consider the dynami
equations for the entropy density and the transverse mom
tum density. For the calculation of the sound mode one
to add the equations for the mass density and the longitud
momentum density to model H@3,4#. Within the field theo-
retic renormalization group theory we have derived expr
sions for the shear viscosity, the thermal conductivity,
sound velocity, and the sound attenuation valid in a temp
ture region from the transition temperatureTc to the back-
ground region~where the transport coefficients behave a
lytically!. We also calculated the sound mode transp
coefficients at finite frequencies.

The aim of this work is to compare the theoretical expr
sions for the hydrodynamic transport coefficients with th
experimental counterparts and to locate nonasymptotic
fects. Here we concentrate on the critical sound propagat
the shear viscosity will be considered in a future work. In t
comparison with experiment some quantities have to
taken as input in the theoretical expressions; other parts
pend on the renormalization group calculation. So we h
two sources of uncertainties in our predictions on the exp
mental side as well as on the theoretical side~e.g., loop ex-
pansion!. The experimental information about static therm
dynamic derivatives and one hydrodynamic coefficient
zero frequency is sufficient for the determination of all d
namical background parameters entering the theoretical
571063-651X/98/57~1!/705~15!/$15.00
f

n
s

n
of

l
n-
s
al

-
e
a-

-
rt

-
r
f-
n;
e
e
e-
e
i-

-
t

x-

pressions. The remaining hydrodynamic coefficients at z
frequency as well as at finite frequencies may then be ca
lated without any additional parameters. This program
quite generally applicable and has been first developed
the critical dynamics near the superfluid transition~see the
review @5# and @6#!.

Our detailed analysis of the theory is restricted to tho
liquids for which measurements of several transport coe
cients are available~i! for the determination of the back
ground parameters and~ii ! to test the predictions of the
theory. Especially for item~i! one needs data in an adequa
accuracy and over a sufficiently large region of temperat
further away fromTc . So far only asymptotic scaling func
tions have been considered in the comparison with exp
ment. After first attempts@7,8#, Ferrell and Bhattacharjee
@9,10# have found within a mode coupling theory agreeme
of experiment with their asymptotic results. However, on
the ultrasonic attenuation in one wavelength at the criti
point of pure fluids was explicitly presented@10#. Very re-
cently a comparison with an asymptotic two loop calculati
~with adjustable frequency scale and scale of the redu
attenuation and dispersion! has been performed@11#. We
take into account nonasymptotic effects in the transport
efficients and the measurements indeed show these effec
the experimental region. For the sound modes one may
troduce scaling variables, not necessarily in the form
asymptotic expressions like the characteristic temperat
dependent frequency@12#, and calculate scaling function
even in the nonasymptotic region.

Recently much progress has also been made within m
coupling theory concerning the transport coefficient sh
viscosity and thermal conductivity@13#. Mode coupling
theory calculates the critical part of the transport coefficie
using an ansatz according to the dynamic scaling the
whereas in our approach, presented in paper I, the b
ground values of the transport coefficients are included.
note that the mode coupling result mentioned includes a
the wave vector dependence of the nonhydrodynamic reg
705 © 1998 The American Physical Society
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706 57R. FOLK AND G. MOSER
The paper is organized as follows: In Sec. II we wr
down the one loop expressions of the thermal conductiv
the shear viscosity at zero frequency in a form suitable
use in the comparison with experiment. We also need
solution of the corresponding flow equations for the two
dependent dynamic model parameters appearing in t
transport coefficients. In Sec. III we summarize the results
the model on the sound velocity and the sound attenua
derived in paper I. The one loop expressions as a functio
the reduced temperature and the frequency, where s
model parameters are replaced by experimentally measu
thermodynamic derivatives, are given explicitly. Further
discuss the matching conditions that connect the flow par
eter with the reduced temperature. In Sec. IV we determ
the static parameters appearing in the model Hamilton
from experimentally measurable quantities. The method
quite analogous to the one used at thel transition in 4He
@14# and 3He-4He mixtures@15#. In Sec. V we determine the
dynamical background parameters by fitting experimen
shear viscosity data over a restricted temperature interva
the background~apart from one example where we use t
thermal diffusion coefficient!. For some liquids we then
show the predictions for the thermal diffusivity or therm
conductivity. Finally we compare our predictions with th
measurements of the sound velocity and the sound atte
tion. In Sec. VI we calculate the nonasymptotic scaling fu
tions and compare them with the reduced dispersion and
tenuation. Some concluding remarks close this paper.

II. SHEAR VISCOSITY AND THERMAL CONDUCTIVITY
AT VANISHING FREQUENCY

In Eq. ~6.6! of the preceding paper@1#, abbreviated as Eq
~I.6.6!, we have derived the theoretical expressions of
shear viscosityh̄ ,

h̄ ~ t !5
1

RT
j22~ t !l t~ t !@11Et„$J~ t !%…# ~2.1!

with T the temperature andR the gas constant~we always
takeT5Tc in the calculations!. From the thermal conductiv
ity kT at vanishing frequency one obtains the thermal dif
sion coefficient

DT~ t !5
kT~ t !

rCP~ t !
~2.2!

with the densityr and the isobaric specific heatCP(t). In-
serting~I.6.5! for the conductivity we get

DT~ t !5j22~ t !G~ t !Ĝff„u~ t !…@11G„$J~ t !%…#. ~2.3!

Both transport coefficients are proportional to the inve
squared correlation lengthj and the corresponding Onsag
coefficientsl t and G. The perturbational contributions ar
contained in the functionsEt andG, which depend on the se
of couplings$J(t)%5$gq(t),u(t), f t(t)%. gq is the coupling
between the order parameter and the density fluctuation
troduced in~I.2.10! andu is the fourth order coupling of the
correspondingf4 model ~I.2.18!. f t is the mode coupling
parameter~I.5.4! between the order parameter fluctuatio
,
r
e

-
se
f
n

of
tic
ble

-
e
n
is

l
in

a-
-
t-

e

-

e

in-

and the transverse momentum density. In the thermal di

sion also the static vertex functionĜff appears. All quanti-
ties mentioned depend on the relative temperature dista
t5(T2Tc)/Tc to the transition temperatureTc . In one loop
order the expressions for the transport coefficients red
with ~I.6.7! to

h̄ ~ t !5
1

RT
j22~ t !l t~ t !F12

f t
2~ t !

36 G , ~2.4!

DT~ t !5j22~ t !G~ t !F12
f t

2~ t !

16 G . ~2.5!

In Eqs.~2.4! and~2.5! three temperature-dependent dynam
parametersG(t), l t(t), and f t(t) appear but only two of
them are independent. ChoosingG(t) and f t(t) as indepen-
dentl t(t) is determined by inverting~I.5.4!:

l t~ t !5
g2~ t !

f t
2~ t !G~ t !

. ~2.6!

From ~I.4.23! one can see that the mode couplingg renor-
malizes only in a trivial manner, therefore the solution of
flow equation is of the simple form~in d53)

g~ l !5Ad
1/2~k l !23/2g° . ~2.7!

As discussed in paper I we choose the wave numberk and
the connection between the flow parameterl and the reduced
temperature as

k5j0
21 , l 5j0j21~ t !. ~2.8!

The geometrical factorAd at three dimensions isA351/4p.
Inserting Eq.~2.8! and the unrenormalized mode couplin
~I.2.7! into Eq. ~2.7! the temperature dependence ofg in
d53 reads

g~ t !5
RT

A4pNA

j3/2~ t !. ~2.9!

Inserting Eqs.~2.6! and ~2.9! into the shear viscosity~2.4!
we get the final expression used in the following:

h̄ ~ t !5
RT

4pNA

j~ t !

f t
2~ t !G~ t !

F12
f t

2~ t !

36 G . ~2.10!

The flow of the remaining two parametersG and f t is deter-
mined by ~I.4.36! and ~I.4.40!. With Eq. ~2.8! the flow pa-
rameter may be replaced by the reduced temperature. In
ing the one loopz functions ~I.6.14! the resulting flow
equations are

dG

dt
5

3

4
j21~ t !j8~ t !G~ t ! f t

2~ t ! ~2.11!

d ft

dt
5

1

2
j21~ t !j8~ t ! f t~ t !S 12

19

24
f t

2~ t ! D , ~2.12!
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where we have introduced the derivativej8(t)5dj/dt. In
this form one recognizes that the solutions of Eqs.~2.11! and
~2.12! reach constant values in the background becaus
j8(t)50. The equations are easily integrated and have
solutions

G~ t !5G0H 19f 0
2j~ t !

24j~ t0! F11
j~ t0!

j~ t ! S 24

19f 0
2

21D G J 18/19

, ~2.13!

f t
2~ t !5

24

19F11
j~ t0!

j~ t ! S 24

19f 0
2

21D G21

, ~2.14!

with the initial conditionsG(t0)5G0 and f t(t0)5 f 0 at t5t0.
Expanding Eq.~2.14! in the asymptotic region leads to th
approximation by the first transient~exponentv f51 in one
loop order!

f t
2~ t !5

24

19F12
j~ t0!

j~ t ! S 24

19f 0
2

21D G . ~2.15!

The nonuniversal amplitude of the transient is fixed by
initial values t0 and f 0

2. However, this approximation is re
stricted to a certain region near the fixed point~see for an
example Fig. 5!.

Inserting the solutions~2.13! and ~2.14! the temperature
flow of the thermal diffusivity~2.5! and the shear viscosit
~2.10! is completely determined. All we need at this stage
the two initial valuesG0 and f 0 and an explicit expression
for the correlation lengthj(t). The temperature dependen
of the correlation length in general does not follow t
asymptotic power law but may include corrections to t
leading terms in the crossover region to its constant ba
ground valuejb . It would be worthwhile to measure th
explicit crossover temperature dependence ofj(t) in order to
perform the analysis in the background properly. Howev
lacking more detailed experimental information we will u
the asymptotic expression

j~ t !5j0t2n, ~2.16!

which seems to be sufficient in the temperature reg
t<1021 and with respect to the uncertainties of other phy
cal quantities entering the transport coefficients. The valu
the universal critical exponentn50.63 @2# has been experi
mentally confirmed for several liquids@16#. Thus we need
for the calculation of the shear viscosity and the therm
diffusivity the knowledge of three nonuniversal paramete
j0, G0, andf 0. The amplitude of the correlation lengthj0 has
been determined experimentally for several fluids, and
listed together with the critical temperatureTc and the criti-
cal densityrc for the liquids considered in the following in
Table I. For a comprehensive overview on experimental
sults in several other liquids see@16# and the reference
therein.

In the asymptotic region the order parameter Onsager
efficient obeys a power lawG(t)5Gast

2(18/19)n with the am-
plitude

Gas5G0S 19

24
f 0

2t0
nD 18/19

, ~2.17!
of
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whereasf t
2(t) reaches its fixed point valuef t

2!5 24
19. Thus the

different asymptotic amplitudes of the shear viscosity a
the thermal diffusion coefficient are determined byj0, and
Gas according to Eqs.~2.3! and~2.10!, but not byG0 and f 0
separately.

The initial values of the Onsager coefficientG0 and the
mode couplingf 0 may be found by fitting the experimenta
data of one of the two hydrodynamic coefficientsh̄ or DT by
the corresponding theoretical expression over a suffic
nonasymptotic temperature interval~in order to getf 0). The
second hydrodynamic coefficient then can be predicted w
out any further experimental input.

For the calculation of the thermal conductivity from th
dynamic model one needs according to Eqs.~2.2! and ~2.5!
the isobaric specific heatCP(t) and the mass densityr. The
mass densityr is a smooth function of the temperature a
therefore may be replaced in the considered narrow temp
ture region nearTc by the critical densityrc . BecauseCP is
not directly measurable in experiments it is necessary to
late it to measurable thermodynamic derivatives. Deta
concerning the explicit calculation ofCP from experimental
data are discussed in Sec. IV.

III. SOUND ATTENUATION AND SOUND VELOCITY

Let us now turn to the sound attenuation and the so
velocity and summarize the results of paper I. The sou
attenuationa(t,v) is related to the sound diffusion coeffi
cient Ds and the sound velocitycs by

a~ t,v!5
v2

2cs
3~ t,v!

Ds~ t,v!. ~3.1!

A closer examination of the magnitudes of the different flu
tuation contributions to the sound velocity and the sou
diffusion shows that the contributions of the thermal cond
tivity and the bulk viscosity~I.5.23! are negligible compared
to the contribution related to the frequency-depend
^f2f2& correlation function~I.5.20! in the asymptotic region
@3#. In the background, however, only these neglected te
lead to a finite background value ofDs(t,v50) @see
~I.6.26!# and to the finite~hydrodynamic! background value
of the attenuation. Usually this background value is alrea
subtracted in the experimental presentations and therefor
only consider the leading fluctuating part of the sound
tenuation, which reaches zero for all frequencies in the ba
ground. The sound velocity reduces to the adiabatic co
pressibility in the background@see~I.6.19!#. Thus we may
simply write

TABLE I. Critical parameters of several fluids.

Liquid j0 ~Å! Tc ~K! rc ~g/cm3)

C2H6 1.8 305.33 0.2065
3He 2.7 3.310 0.0415
4He 2.0 5.190 0.0696
Xe 1.9 289.73 1.110
CO2 1.6 304.13 0.4678
SF6 2.0 318.69 0.730
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708 57R. FOLK AND G. MOSER
cs
2~ t,v!5Re@Cs

2~ t,v!#, Ds~ t,v!52
1

v
Im@Cs

2~ t,v!#, ~3.2!

with the complex coefficientCs
2 given by @see~I.5.20!#

Cs
2~ t,v!5

ajaq~j0
21l !6c2~ l !

11@gq
2~ l !/aq#F1„v~ l !,w~ l !,$J~ l !%…

. ~3.3!

The e-expanded one loop expression
F1„v( l ),w( l ),$J( l )%… is @see~I.5.6! and ~I.5.18!#

F1„v~ l !,w~ l !,$J~ l !%…

52
1

4H v2

v1v2
lnv1

1

v12v2
Fv2

2

v1
lnv22

v1
2

v2
lnv1G J . ~3.4!

with

v6~ l !5
v~ l !

2
6AS v~ l !

2 D 2

1 iw~ l !. ~3.5!

From ~I.5.3! the temperature parameterv( l ) and the fre-
quency parameterw( l ) are

v~ l !5
j22~ t !

~j0
21l !2

, w~ l !5
v

2G~ l !~j0
21l !4

~3.6!

The calculation of the static couplinggq
2( l )/aq will be de-

scribed in Sec. IV. Finally from~I.2.7!, ~I.4.36!, and~I.2.25!
we have for the parameterc2( l ) the expression

c2~ l !5~RTr!2~j0
21l !26Zq

21e*1
l
~dx/x!zq. ~3.7!

The parameterc renormalizes with a static renormalizatio
factor Zq , which may be eliminated using the static corre
tion it function ~I.4.18!. From this relation it follows that

Zq
21e*1

l
~dx/x!zq5

G° qq
~s!~j22,g° q ,u° !

Ĝqq
~s!

„gq~ l !,u~ l !…
. ~3.8!

Inserting~I.2.17! for the unrenormalized vertex function an
~I.4.19! for the amplitude functions we get

Zq
21e*1

l
~dx/x!zq5

11@gq
2~ l !/aq#F1

~s!
„u~ l !…

aq^q0q0&c
. ~3.9!

The unrenormalized correlation function in Eq.~3.9! may be
replaced by the corresponding thermodynamic derivative
ing Eq.~I.2.14!. With Eq. ~3.9! the parameter~3.7! turns into

c2~ l !5
RTr

aq
~j0

21l !26S ]P

]r D
s

S 11
gq

2~ l !

aq
F1

~s!
„u~ l !…D . ~3.10!

The flow parameterl , now considered at finite frequen
cies, is a function of the temperature distancet and the fre-
quency v. It is determined by the matching conditio
~I.2.28!

j28~ t !1S 2v

G~ l ! D
2

5~j0
21l !8. ~3.11!
-

s-

Equation~3.11! includes the Onsager coefficientG( l ). With
the initial conditionG0 from the viscosity fit in the preceding
section and the flow equation~2.11! we know the Onsage
coefficient as a function of the temperature distancet̄ at
v50, where we have introduced the bar to avoid confus
with the temperature distancet at finite frequency. A given
temperature distancet at finite frequency corresponds to
certain valuel (t,v). The same value of the flow paramet
on the other side may be written as an effective tempera
distance t̄ at v50 by the relation~2.8! l 5j0j21( t̄ ) @this
only works whenj( t̄ ) is a bijective function, which is the
case for the analysis performed here@17##. Therefore it is
sufficient to know the Onsager coefficientG( t̄ ) for the
v50 temperature scale~the same holds for all other stati
and dynamic parameters of the model!. Via Eqs. ~2.8! and
~3.11! all model parameters are known as a function oft at
arbitrary frequencies. Inserting Eq.~2.8! into Eq. ~3.11! the
two temperature scales are directly related by

j28~ t !1S 2v

G~ t̄ !
D 2

5j28~ t̄ !. ~3.12!

The above equation allows one to calculate for each temp
ture distancet at finite frequency the corresponding effectiv
temperature distancet̄ at v50 at which the values of the
model parameters have to be known. Because the correla
length is a static quantity, it has to be the same function
the temperature distance independent of the freque
which means that we may write analogous to Eq.~2.16!
j( t̄ )5j0 t̄ 2n in the asymptotic region. Inserting in Eq
~3.12! we get

t8n1S 2j0
4v

G~ t̄ !
D 2

5 t̄ 8n. ~3.13!

In Fig. 1 the function t̄ (t), calculated by inversion of Eq
~3.13! at fixedv, is shown at several frequencies. Approac
ing the critical temperature at finite frequencies (t→0), the
corresponding effective temperature distance at zero
quency t̄ becomes a constant. Thus all static and dynam
parameters that are functions of the flow parameter also
into constant values atTc . The temperature distancet at
which these parameters cross over to constant values
pends on the frequency.

With the solution t̄ (t,v) of ~3.13! the temperature and
frequency parameter~3.6! can be rewritten as

v@ t, t̄ #5
j22~ t !

j22@ t̄ #
, w@ t̄ #5

v

2G@ t̄ #j24@ t̄ #
. ~3.14!

Inserting into Eq.~3.3! finally we get

Cs
2~ t,v!5S ]P

]r D
s

@ t̄ #

3
11~gq

2@ t̄ #/aq!F1
~s!~u@ t̄ # !

11~gq
2@ t̄ #/aq!F1~v@ t, t̄ #,w@ t̄ #,$J@ t̄ #%!

.

~3.15!
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57 709FREQUENCY-DEPENDENT SHEAR . . . . II. . . .
The explicit expression of the frequency-dependent am
tude functionF1(v,w,$J%) is given in Eq.~3.4!. The cal-
culation of the static couplingsgq( t̄ ), u( t̄ ) and the thermo-
dynamic derivative (]r/]P)s( t̄ ) at the zero frequency
temperature scale from experimental quantities and the
plicit expression of the static amplitude functionF1

(s)(u) will
be treated in the following section.

IV. DETERMINATION OF THE STATIC PARAMETERS

The flow parameter dependence and the temperature
pendence respectively of the static couplingsu(t) andgq(t)

FIG. 1. The effective temperature distancet̄ (t) @see Eq.~3.13!#
as function of the temperature distancet at finite frequency for
several fixed frequencies and liquids.
-

n

io
m

li-

x-

e-

may in principle be calculated from the corresponding flo
equations ~I.4.8! and ~I.4.9! together with the condition
~I.4.15! fixing the connection between flow parameter a
reduced temperature. However, in the region where the
rameters adopt their background values, another proced
that finds the static parameters directly from experime
without using the flow equations is more appropriate. T
method has been developed and successfully used at tl
transition in 4He @14# and in 3He-4He mixtures@15#. It al-
lows one to calculate the temperature-dependent model
rameters from experimentally measured quantities by de
ing relations between thez functions and thermodynami
functions. Equation~I.2.14! relates the adiabatic compres
ibility to the unrenormalized secondary density correlati
function calculated within the model~I.2.10!. To obtain a
connection to renormalized parameters one has to searc
expressions containing the correlation in which no expl
renormalization constants appear when the renormal
quantities are inserted. This requirement is fulfilled by t
expressions

R0~ t !5
~]r/]P!s

1

~]r/]P!s
2

, D0
1~ t !52

dln~]r/]P!s
1

dlnt
. ~4.1!

The superscript1 or 2 indicates whether the quantity i
taken above or below the critical temperature. The therm
dynamic derivatives are related to the model correlat
functions defined in~I.2.12!. After a lengthy calculation
given explicitly in @14# one ends up with the relations
R0~ t !21

D0
1~ t !

5
@22zf2~u!#@F2

~s!~u!2F1
~s!~u!#

Bf2~u!2@2zf2~u!2e#F1
~s!~u!2bu~u!dF1

~s!/du
~4.2!

gq
2~ t !

aq
5

@22zf2~u!#D0
1~ t !

Bf2~u!2$2zf2~u!2e1@22zf2~u!#D0
1~ t !%F1

~s!~u!2bu~u!dF1
~s!/du

, ~4.3!
oop
-

where we have introduced

zf2~u!5z r~u!2zf~u!,

bu~u!5u@2e22zf~u!1zu~u!#. ~4.4!

The z functions have been defined in~I.4.6!. F1
(s) and F2

(s)

are the amplitude functions of thef2-f2 correlation function
above and belowTc introduced in~I.4.19!. The functionBf2

follows from the additive renormalization of thef2-f2 cor-
relation function@14# and e542d is the standard dimen
sional parameter. Equation~4.2! allows the calculation of
u(t) from experimental quantities, because the right ha
side of the equation only contains functions ofu calculated
within the f4 model ~I.2.18!, while the left hand side is
related to thermodynamic derivatives. Solving the equat
for u one gets the parameter expressed by thermodyna
d

n
ic

functions. Insertingu(t) in Eq. ~4.3!, one obtainsgq(t) with
the same thermodynamic functions used before. In one l
order thez functions and amplitude functions for a one com
ponent order parameter read

z r5
u

2
, zu5

3

2
u, ~4.5!

zf50, Bf25
1

2
, ~4.6!

F1
~s!52

1

4
, F2

~s!5
3

u
21. ~4.7!
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710 57R. FOLK AND G. MOSER
Inserting Eqs.~4.5!–~4.7! into the right hand side of Eqs
~4.2! and ~4.3! one gets explicit expressions ofu-dependent
functions.

The adiabatic compressibility is not directly measura
in experiment; it is related to the experimental measura
quantities by

S ]r

]PD
s

5
CV

CP
S ]r

]PD
T

, ~4.8!

with the isobaric specific heat

CP5CV1
T

r2S ]P

]T D
r

2S ]r

]PD
T

. ~4.9!

In contrast to thel transition in 4He @14# and 3He-4He mix-
tures @15# where only the knowledge of the temperatur
dependent specific heat was necessary for the calculatio
u and gq , now in the case of the gas-liquid transition w
need the experimental information about the temperature
havior of three thermodynamic derivatives.

For an explicit calculation ofCP , g(t), and u(t) Eqs.
~4.9! and ~4.8! offer two possible ways to proceed.

~i! Using experimental information aboutCV , (]r/]P)T ,
and (]P/]T)r one may immediately calculateCP and
(]r/]P)s from Eqs.~4.9! and~4.8!. From the latter quantity
also gq

2/aq can be calculated from Eq.~4.3! under the ap-
proximation u(t)5u!. This is justified since no explicitu
contributions appear in the dynamic flow equations~2.11!,
~2.12! and the expressions for the transport coefficients~2.1!,
~2.3!, and~3.15!.

~ii ! The thermodynamic derivative (]r/]P)s may also be
determined directly from sound velocity measurements
zero frequency by (]r/]P)s51/cs

2(v50). In this case the
static parametergq

2/aq is completely determined by th
sound velocity at zero frequency. From Eq.~3.15! the sound
attenuation and velocity at arbitrary finite frequency follo
immediately. In order to obtainCP , which is necessary for a
calculation of the thermal conductivity, one needs additio
experimental information aboutCV and (]r/]P)T as can be
seen from Eq.~4.8!.

Thus for the calculation of the critical sound propagati
we need either experiments on three temperature-depen
thermodynamic derivatives or measurements of the so
velocity at zero frequency in the critical region. For3He and
4He the three thermodynamic derivativesCV , (]r/]P)T ,
and (]P/]T)r are available. In both liquids measurements
the zero frequency sound velocity also exist, which offers
possibility to compare the results of the two methods fo
calculation of the critical sound velocity discussed above

The isochoric specific heat in the critical region has be
measured by Brown and Meyer@18# for 3He and by Mold-
over @19# for 4He. The data are shown in Fig. 2~a!. In order
to obtain a continuous representation of the experimenta
sults we use the fit given in@18# for 3He containing the
correct asymptotic behavior

CV5
11t

Tc
t2a@A11A2tD#. ~4.10!
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The critical exponents are fixed toa50.11 andD50.54,
while the free parametersA1 andA2 are listed in Table II for
both liquids. In 4He the same expression~4.10! has been
used with the parameterA1 chosen to match the experimen
tal data in the background andA2 kept fixed at the3He
value, because the increase in the regiont,1022 seems to
be too large compared with3He @see Fig. 2~a!#. Not all data
of Ref. @19# have been shown since the data nearest toTc are
not consistent with a power law and an inclusion of the d
belowt,1022 shown here would lead to a value ofa50.15.

The isothermal compressibility has been measured
Wallace and Meyer@20# for 3He and by Roach@21# for 4He.
In both cases the data may be represented by a simple p
law

1

rc
S ]r

]PD
T

5GTt2g, ~4.11!

where the effective critical exponent is chosen to beg51.19
in the temperature region considered. This value is differ
from the expected asymptotic universal exponent 1.24 du
nonasymptotic effects. The amplitudeGT is determined by a
fit, which is shown in Fig. 2~b! for both liquids. The param-
etersGT obtained are listed in Table II@22#. Finally the ther-
modynamic derivative (]P/]T)r is found from measure-
ments of the equation of state performed by Behringeret al.

FIG. 2. Experimental thermodynamic derivatives in3He mea-
sured by@18,20,23# ~squares! and 4He measured by@19,21,24# ~cir-
cels!, which are used to determine the static couplinggq

2/aq . The
fits with expressions~4.10!, ~4.11!, and ~4.12! are drawn as full
lines for 3He and dashed lines for4He.
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TABLE II. Results for the fit parameters of Eqs.~4.10!, ~4.11!, and~4.12! in 3He and 4He. The corre-
sponding curves are shown in Fig. 3.

A1 A2 GT a0 a1 a2 B
~J/mol! ~J/mol! ~1/Torr! ~Torr/K! ~Torr/K! ~Torr/K! ~Torr/K!

3He 25.11 2.6 2.2331024 888.9 21294.1 0.0 1289.0
4He 48.0 2.6 7.5331025 1289.2 25190.5 4505.0 4085.7
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@23# in 3He and by Kierstead@24# in 4He. The thermody-
namic derivative is a smooth function of the temperat
reaching a finite value atTc . In order to get a continuou
representation of the data in the considered temperature
gion we simply parametrize the thermodynamic derivat
with

S ]P

]T D
r

5a01a1t1a2t21Bt12a. ~4.12!

The last term in Eq.~4.12! contains the correct asymptot
behavior of (]P/]T)r at the critical isochore@23#. The quan-
tity itself is finite at the critical temperature but the tempe
ture derivative diverges with the exponent of the spec
heata in the asymptotic limit.a0 is determined by the value
of (]P/]T)r at Tc @23#. The parametersa1, a2, and B are
found by a fit shown in Figs. 2~c! and 2~d!, and the param-
eters obtained are listed in Table II. The isobaric spec
heat can now be calculated from the relation~4.9! by insert-
ing the fits~4.10!, ~4.11!, and~4.12! for 3He and 4He.

Inserting the three fits into Eqs.~4.8!, ~4.1!, and~4.3! we
obtain the static couplinggq

2/aq shown in Fig. 3 as dashe
lines for 3He and4He. On the other hand from sound velo
ity measurements in3He @12# and in 4He @25# we may di-
rectly calculate (]r/]P)s from the experimental value
shown in Fig. 4. The experimental data may be represe
by a fit, shown as full lines in the same figure, with t
asymptotic power law including first order corrections in t
nonasymptotic region, which reads

S ]r

]PD
s

5t2a~g11g2tD!. ~4.13!

The parametersg1 and g2 obtained by a fit in the region
1025<t<1021 for 3He and 1024<t<1021 for 4He are
listed in Table III.

There are also measurements of the zero frequency s
velocity in the critical region for Xe@26#, CO2 @27#, and
SF6 @28#. The resulting experimental derivative (]r/]P)s

and a fit over all data with Eq.~4.13! are also shown in Fig
4, the parameters obtained are given in Table III. Insert
(]r/]P)s from the sound velocity into Eq.~4.3! we get the
static couplingsgq

2/aq for the three liquids shown in Fig. 3 a
full lines. In the limit t→0 all curves reach a fixed poin
value that is different from the value obtained in one lo
theory although we have used the one loop expressions fz
functions. The reason for this behavior is, that we have fit
the thermodynamic derivatives with exponents differe
from the one loop exponents, which represent the experim
tal data in the considered temperature region in a more
equate way. Fora and n and D we used the best value
e

re-
e

-
c

c

ed

nd

g

r
d
t
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d-

available obtained in an asymptotic theory by higher orde
calculations. In contrast the exponentg describing the tem-
perature behavior of the isothermal compressibility in th
experimentally accessible temperature region has been
placed by an effective one. The asymptotic region of tha
quantity obviously lies in a temperature region so close t
the critical point that it is not reached by experiments.

V. COMPARISON OF THE TRANSPORT COEFFICIENTS
WITH EXPERIMENT

A. Background parameters and thermal mode

We now determine the initial values of the Onsager coe
ficient G0 and the mode couplingf 0. It is suitable to fit for
that purpose the experimental measured shear viscosity w
Eq. ~2.10!. Together with the results from statics discussed i
the previous section the remaining transport coefficients lik
thermodiffusion coefficient or thermal conductivity as well
as the sound velocity and the sound attenuation are th
determined without any adjustable parameter. The reason
choosing the shear viscosity as the quantity to be fitted is th
absence of any temperature-dependent static function in E
~2.10!, which assures that the dynamic coefficientsG0 and f 0
are calculated from a pure dynamic function avoiding an
mixing with static effects apart from the correlation lengthj.
However, the amplitudej0 influences the fit parameters
found. As already mentioned the crossover ofj to its back-
ground valuejb would also be of relevance. For most of the
liquids the shear viscosity in the critical region is available

FIG. 3. A comparison of the static couplinggq
2/aq calculated

with Eq. ~4.3! for several liquids. The two dashed lines are calcu
lated with Eq.~4.8! inserting the thermodynamic derivatives~4.10!,
~4.11!, and ~4.12! for 3He and 4He. The full lines are determined
from the adiabatic compressibility, which has been calculated fro
the zero frequency sound velocity in3He, 4He, Xe, CO2, and SF6.
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712 57R. FOLK AND G. MOSER
FIG. 4. The adiabatic compressibility determined from zero fre
quency experiments in3He @12# ~squares!, 4He @25# ~circles!, Xe
@26# ~up triangles!, CO2 @27# ~diamonds!, and SF6 @28# ~down tri-
angles!. The corresponding fits with expression~4.13! are drawn as
full lines.

FIG. 5. Solutions of the flow equations~2.13! and ~2.14! for
several liquids where the initial valuesG0 and f 0 have been found
from fits of the shear viscosity~see Fig. 6 except for SF6, where we
fitted the thermal diffusion coefficient, see Fig. 7!. The fit of the
shear viscosity of C2H6 has already been shown in@31#. The cor-
responding initial values are listed in Table IV. For3He we also
show the flow off t including only the first transient@according to
Eq. ~2.15!#. The restriction of this approximation to the near
asymptotic region is clearly seen.
rather than the thermal diffusion coefficient or the therm
conductivity. The thermal diffusion coefficient is in mo
cases less suitable for the determination of the initial para
eters because of the stronger temperature dependence m
ing the crossover behavior to the background.

In ethane~C2H 6) both the shear viscosity@29# and the
thermal diffusion coefficient@30# have been measured in su
ficient accuracy for an analysis. The initial conditions o
tained from the shear viscosity at the temperature distanct0
are listed in Table IV although we do not present the fit
the shear viscosity and the prediction of the thermal diffus
coefficient. This has already been shown in@31# ~see Fig. 2
there!. For comparison with other liquids we show in Fig.
the corresponding flow ofG(t) and f t(t). Analogous to
C2H 6 we have fitted the experimental results of the sh
viscosity in 3He, 4He @32#, Xe @33#, and CO2 @34# in the
temperature region indicated in Fig. 6 with Eq.~2.1!. The
resulting fits are shown in Fig. 6 as full lines and the init
values ofG0 and f 0 obtained are given in Table IV. The
flows of the dynamic parametersG(t) and f (t) are compared
in Fig. 5. Both the Onsager coefficient and the mode c
pling are in the experimental region more or less differe
from their asymptotic behavior, most pronounced in3He and
less pronounced in Xe.

No shear viscosity is available in SF6 and therefore we
use the data of the thermal diffusion coefficient@30#. The
asymptotic temperature dependence of the thermal diffus
constant is given by a power lawDT;tg2xln. The one loop

value of the dynamical critical exponentxl5 18
19 50.947,

which is somewhat larger than the two loop valuexl50.916
@2#. This leads~i! to a flatter decrease in the thermal diffusio
coefficient and~ii ! a flatter increase in the shear viscosity
one loop order. However, since we only know the no
asymptotic amplitudes in one loop order we also keep
one loop order results for the flow equations and expone
This deviation is seen in Fig. 7, where the fit region is ag
indicated by the bar. A similar deviation has been obser
in the shear viscosity of CO2 in the region t,1025 not
shown here. The asymptotic divergence of the shear vis
ity t2xhn is weaker because ofxh50.053 in one loop order
andxh50.065 in two loop order. In He this effect is maske
by the gravitation. One might suggest to take in our analy
the two loop result for the flow equations. This, howev
would lead, because of the change in the fixed point value
the mode couplingf t

! , to an inconsistent value of the Ka
wasaki amplitudeR @7# known only in one loop order
(R!51.056@31#!. Its nonasymptotic form enters the theor
when the shear viscosity is related to the thermal diffus

-

TABLE III. Results for the fit parameters of Eq.~4.13! for sev-
eral liquids. The corresponding curves are shown in Fig. 5.

g1F105
g

cm3 Torr
G g2F105

g

cm3 Torr
G

3He 1.331 20.675
4He 1.113 21.344
Xe 0.773 22.872
CO2 0.292 20.327
SF6 0.418 20.286
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TABLE IV. Initial values att0 of the dynamic model parametersG0 and f 0 together with the asymptotic
amplitudeGas of G(t) according to Eq.~2.17! and the crossover temperaturetc at v51 MHz.

Liquid t0
G0F1018

cm4

s G f 0
GasF1018

cm4

s G 1023 tc~1 MHz!

C2H6 0.1 3.87 0.576 0.276 0.87
3He 0.1 2.11 0.345 0.057 4.3
4He 0.1 0.83 0.495 0.044 2.7
Xe 0.1 0.75 0.811 0.1 1.6
CO2 0.03 2.41 0.763 0.143 0.95
SF6 0.1 2.56 0.674 0.246 1.1
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h̄ (t)5kBTR(t)/@DT(t)j(t)# according to Eqs.~2.5! and
~2.10!. Our asymptotic one loop value is also consistent w
the optimal value adopted in mode coupling theory@13#.

Now all dynamic parameters are determined and we
able to predict other transport coefficients. For C2H 6 we
have compared with the thermal diffusion coefficient~see
Fig. 2 in @31#! and good agreement has been found. In3He
and 4He the thermal conductivity has been measured in
critical temperature region by Pittmanet al. @35# (3He! and
by Acton and Kellner@36# (4He!. The experimental result
are shown in Fig. 8. With the initial values given in Table I
we predict the thermal conductivity with Eqs.~2.2! and~2.3!
for both liquids~full and dashed lines in Fig. 8!. The isobaric
specific heat has been calculated from Eq.~4.9! using

FIG. 6. Fits of the shear viscosity data of3He, 4He @32#, Xe
@33#, and CO2 @34# with Eq. ~2.4!. The temperature intervals in
which the fits have been performed are marked by a horizontal
The deviation of the fit in3He and4He belowt,1024 indicates the
onset of the influence of gravitation on the measurements not ta
into account in this analysis. For Xe and CO2 this influence is less
pronounced.
h

re

e

method ~i! explained in the preceding section. The sligh
minimum in the prediction for3He is an artifact resulting
from the overcompensation of the decrease ofG(t) and
CP(t) @see the expressions~2.5! and ~2.2!# due to the in-
crease ofj22(t) used in its asymptotic form in the region
near the background, which is too strong. One should a
note that a further extrapolation into the asymptotic region
not possible because here we used forCP an effective expo-
nent ofg51.19 butn50.63. It would be worthwhile to have
more accurate static data for the isothermal compressibili
For CO2, SF6, and Xe we have no complete set of dat
available. Although in CO2 the thermal conductivity has
been measured one needs the static thermodynamic funct
for a calculation ofCP(t). No measurements of the therma
conductivity or thermal diffusion in SF6 and Xe are known
to us.

As discussed in Sec. III the flow of all model paramete
at finite frequency is calculable from the corresponding flo
at zero frequency. Using Eq.~3.13! together with the flow of
the Onsager coefficientG(t) just determined we calculated a
each temperature distancet for finite frequency the effective
temperature distancet̄ (t) via the matching condition~3.13!.
Since the dynamic nonasymptotic Onsager coefficientG( t̄ )
enters the result oft̄ is different from what one would get
from the matching condition in its asymptotic form. The dif
ference between the asymptotic matching condition and
nonasymptotic one has been discussed in@37#. For that pur-

r.

en
FIG. 7. Fit of the thermal diffusion coefficient data of SF6 @30#

with Eq. ~2.5!.
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714 57R. FOLK AND G. MOSER
pose one may replaceG( l ) at a fixed distance from the criti-
cal point ~measured in values ofl ) by its asymptotic power
law behavior. The difference between the matching cond
tions ~3.11! increases for an increasing distance from th
critical point as can be seen in Fig. 6 of@37#.

B. Sound mode

For a second test of the dynamic renormalization theor
we turn to the prediction of the critical temperature depen
dence of the sound mode at finite frequencies. The questi
arises as to which extent the nonasymptotic flow, found i
the comparison with the shear viscosity and the therm
mode, influences the sound mode. One has to note the f
lowing items:~i! the mode, couplingf t( l ) does not appear in
the expressions for the sound velocity and sound attenuati
in one loop order according to Eq.~3.3!; ~ii ! the order pa-
rameter Onsager coefficientG( l ) enters only via the match-
ing condition Eq.~3.11! and the definition ofw( l ) Eq. ~3.6!,
~iii ! the static couplinggq( l ) between the order parameter
and the mass density enters at nonzero frequency. From t
we expect that the main nonasymptotic effects found in th
dynamic parameters can be taken into account by using
nonasymptotic scaled frequency~see Sec.VI below!, whereas
refined details depend on the nonuniversal behavior of th
static couplinggq .

From Eqs.~3.1!, ~3.2!, ~3.14!, and ~3.15! we may now
calculate the sound attenuation. The experimental sound
tenuation is determined in terms of a signal ratio per length
which is given in Neper or dB. The absolute scale of our on
loop theory can be judged by the value of the attenuation
one wavelength atTc in the zero frequency limit, which is
0.21O( f t

2) according to~6.4! below and~I.7.7!. The univer-
sal value without expandsion inf t will be p2a/2nz50.27
@10#. In order to be independent of this value we normaliz
the attenuation at some frequency~we take the lowest avail-

FIG. 8. A comparison of the experimental thermal conductivity
in 3He @35# ~squares! and in 4He @36# ~circles! and predictions of
the theory; the full line for3He and dashed line for4He are calcu-
lated from Eqs.~2.2! and ~2.5! without any free parameter. The
dashed-dotted line is the representation of the thermal conductiv
for 3He ~at that time not measured! used in@12# @see Eq.~20! there#

for the calculation of the scaled frequencyỹ appearing in the non-
asymptotic scaling function for the reduced sound attenuation an
sound dispersion.
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able frequency! at some temperature value~we take the tem-
perature value nearest toTc). Dividing the sound attenuation
by the value at its normalization point we get what we c
adjusted attenuationaad. The same procedure is then don
for our theoretical prediction. Thus apart from this norm
ization the adjusted attenuation at other frequencies and
peratures is then predicted. In Fig. 9 the comparison with
data is shown for3He @38#, 4He, and Xe@39#. For SF6 a
measurement only at one frequency is available but the
dicted temperature dependence agrees quite satisfact
with the data~see Fig. 10!.

The crucial relation in the calculation of the theoretic
adjusted sound attenuation is the matching condition~3.13!,
which determines at which temperature distance the effec
temperature distance crosses over to a constant value~see
Fig. 1!. Within this crossover region the sound attenuati
stops growing and bends over to its finite value atTc . The
location of this bendover is sensitive to the Onsager coe
cientG( t̄ ) found from the fit. A rough estimate of the cros
over temperature can be found by comparing the two lim
ing matching conditions. At t50 we have
2v/G( l )5(j0

21l )4 and atv50 we havetn5 l . Eliminating l
leads to the estimate of the crossover temperat
tc;A2v/Gasj0

24, where we have used the asymptotic O
sager coefficient and the approximationsz53 andn5 2

3. For
the frequencies considered in Fig. 9 the same quality of
prediction is reached whether the static couplinggq

2/aq has
been determined from the thermodynamic derivatives
from the zero frequency sound velocity as discussed in

ity

d

FIG. 9. Adjusted sound attenuation aad(t,v)
5a(t,v)/a(tn ,vn/2p) calculated from Eqs.~3.1!, ~3.2!, and
~3.15! without any adjustable parameter in3He, 4He, and Xe~full
lines!. tn is the temperature distance of the data point nearest toTc

at vn50.5 MHz for He andvn51 MHz for Xe. The experimental
data are from@12# (3He!, @25# (4He!, and@39# ~Xe!.
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previous section~see Fig. 3!. The reason for this is the nor
malization of the sound attenuation data. Even at low f
quencies the effective temperature distance reached lie
the nonasymptotic regime wheregq

2/aq is different from its
universal asymptotic value@see the remark in paper I afte
~I.4.10!#. Thus the strong dependence of the attenuation
this static coupling, to which it is proportional, is weaken
and most pronounced at large frequencies for4He ~but
smaller than 10%), because according to Fig. 3 there
difference due to the differences in the static measurem
is largest.

From Eqs.~3.2!, ~3.14!, and ~3.15! the sound velocity at
several frequencies has to be calculated. In contrast to
sound attenuation now the results may be influenced by
method of determining the static derivative (]P/]r)s . This
is shown in Figs. 11 and 12. In Fig. 11 for3He and4He the
lines are calculated usingCV , (]r/]P)T, and (]P/]T)r ,
while in Fig. 12 for 3He, 4He, Xe, and SF6 the static deriva-
tive is determined from the experimental zero frequen
sound velocity. One should note that the deviation in F
11~a! of the theoretical sound velocity in3He calculated
from static thermodynamic derivatives is of the order of 2
only. This can be considered as a proof of the internal c
sistency of the static experimental data@18,20,23#. In 4He
the deviation of the theoretical results is larger than in3He
@see Fig. 11~b!#. One reason may be that the static therm
dynamic derivatives, which are necessary to determine
model parameters, and the sound velocity itself are meas
by different experimental groups@19,21,24,25# while in con-
trast in 3He all data come from the same experimental gro
@18,20,23,32,12#. In Fig. 13 we present the prediction of th
sound velocity of CO2 calculated from the zero frequenc
sound velocity@27#.

In the theory described above we have used the stan
procedure in the calculation of the model functions. T
means that the flow equations are taken in their full nonlin
form, and the amplitude functions of the transport coe
cients have been calculated in ane expansion@1#. Using the
method mentioned in@40# one may avoid thee expansion in
the amplitude functions by calculating them directly at
mensiond53 . This leads to somewhat different results f

FIG. 10. Adjusted sound attenuation~same as in Fig. 9! calcu-
lated from Eqs.~3.1!, ~3.2!, and ~3.15! without any adjustable pa
rameter in SF6 ~full line, vn50.6 MHz!. The experimental data ar
from @28#.
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the amplitude functions of the thermal diffusivity and th
shear viscosity at zero frequency@compare Eq.~I.6.7!#

G~$J%!52
f t

2

12
, Et~$J%!52

f t
2

72
. ~5.1!

The frequency-dependent amplitude functionF1 of thed53
calculation reads

F1„v~ l !,w~ l !,$J~ l !%…5
1

2H v3/2

v1v2
1

1

v12v2

3Fv2
3/2

v1
2

v1
3/2

v2
G21J . ~5.2!

Performing a fit of the shear viscosity using the amplitu
functionEt from Eq.~5.1! instead of thee-expanded one, the
sound attenuation and the sound velocity may be calcula
with thed53 amplitude function~5.2!. The differences are a
good estimate of the theoretical uncertainties at one l
level. To give an example we compare the results of the
calculations for the frequencies 0.5 and 1 MHz in3He in
Fig. 14. Whereas the experimental data of the sound velo
lie within the two theoretical results, this is not the case
the sound attenuation, where thee expansion seems to b
more favorable. However, the differences are less than 1

FIG. 11. Sound velocity in3He ~data from@12#! and 4He ~data
from @25#! at several frequencies without any free parameter. T
curves are calculated from Eqs.~3.2! and ~3.15! with the static
couplinggq

2/aq and the adiabatic compressibility extracted from t
thermodynamic derivatives in Fig. 2.
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VI. SCALING FUNCTIONS

A. Asymptotic scaling

We first consider the asymptotic limit of Eqs.~3.2! and
~3.1!. In this limit the order parameter Onsager coefficien
follows a power law,G( l )5Gasl

z24, with Gas from Eq.
~2.17! and one introduces a scaled frequencyy:

FIG. 12. Sound velocity in3He and 4He ~same data as in Fig.
11!, Xe ~data@39#!, and SF6 ~data@28#!. The curves are calculated
from Eqs.~3.2! and ~3.15! without any free parameter. The static
coupling gq

2/aq and the adiabatic compressibility been been ex
tracted from the zero frequency sound velocity.

FIG. 13. Prediction of the sound velocity in CO2 for different
frequencies calculated as in Fig. 12. The zero frequency data a
collected from@27#.
t

y5
v

2Gasj0
24tzn

. ~6.1!

The matching condition Eq.~3.11! leads to the solution

l 5tnS~y! ~6.2!

with the limiting behaviorS(0)51 andS(y)5(4y)1/z close
to Tc . An analytic solution of the matching condition~3.11!
is possible if one takes the approximationz53 for the dy-
namical critical exponent. This solution has been used for
calculation of the asymptotic scaling functions. A compa
son of the asymptotic matching linesl (t,v), where one uses
the asymptotic power law behavior ofG(t), with the match-
ing lines using the nonasymptotic solution forG(t) defini-
tively shows that the experimental data lie within the non
ymptotic region in thev-t plane ~see Fig. 6 in @37#!.
Therefore the application of these asymptotic results ha
be taken with caution.

Inserting Eqs.~6.1! and~6.2! into the definition~3.6!, the
parametersv andw become functions ofy:

v~ l !5@S~y!#22, w~ l !5y@S~y!#2z. ~6.3!

Then we obtain for the amplitude functionsF1(y) andCs(y)
complex functions ofy, from which the asymptotic cross
over functions for the sound velocityYc(y) @see~I.7.27!# and
attenuationYa(y) @see~I.7.29!# are calculated. The crossove
function for the sound velocity and the attenuation in o
wavelength

-

re

FIG. 14. Comparison of the sound attenuation and velocity c
culated with thee-expanded amplitude functions~3.4! ~full lines!
and thed53 amplitude functions~5.2! ~dashed lines! at 1 MHz in
3He. The data~circles! are from@12#.
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al52p
Im@Cs

2#

Re@Cs
2#

~6.4!

were shown in@37# ~see Figs. 7 and 8 there!. The last men-
tioned scaling function agrees quite well with the calculat
of Ferrell and Bhattacharjee@10#. We note that because o
the matching condition the whole range of values of the s
ing variable 0<y<` the scaling function is determined b
values of the one loop integral contribution toCs(v,w) and
F1(v,w), with arguments within the region 0<v( l )<1 and
0<w( l )< 1

4.

B. Nonasymptotic scaling

Since it has been shown in our analysis of the experim
tal data that the behavior of the order parameter Onsa
coefficientG and the mode couplingf t is nonasymptotic, one
may define, instead of the functions considered above, n
asymptotic scaling functions@12# by introducing the non-
asymptotic scaled frequency

ỹ5
v

2G~ t !j24~ t !
. ~6.5!

In the asymptotic limitỹ turns intoy. Plotting the suitable
scaled attenuation in one wavelength and dispersion ag
the nonasymptotic scaled frequency the sound data fal
most on one curve@12#. A corresponding nonasymptoti
scaling function can be found in our theoretical approach
solving the matching condition approximately. The appro
mation consists of replacing thel dependence inG( l ) by tn

rather thant̄ n and keeping the nonasymptotic dependence
G on t. For the static couplinggq

2/aq its fixed point value is
taken. Ifv is small compared toG( l )j(t)24 the solution of
Eq. ~3.11! may be written as

l 5tn S̃~ ỹ !, S̃~ ỹ !5~1116ỹ 2!1/8. ~6.6!

Inserting l into the expressions for the complex coefficie
Cs

2(t,v) we may plot the scaling functions for the reduc

attenuationI ( ỹ ) and reduced dispersionJ( ỹ ) @see Eqs.~15!
and ~16! of @12# for the definition#

I ~ ỹ !52p
Im@Cs

2~ ỹ !#

S̃a/2n~ ỹ !$Re@Cs
2~ ỹ !#%2

J~ ỹ !512
Re@Cs

2~0!#

S̃a/n~ ỹ !Re@Cs
2~ ỹ !#

, ~6.7!

with

v~ l !5
1

S̃2~ ỹ !
, w~ l !5

ỹ

S̃4~ ỹ !
. ~6.8!

The denominator inw( l ) is essential for the comparison wit
the data since it restricts thew( l ) values used in the expres
sion for F1 to the same finite interval 0<w( l )< 1

4 as the
asymptotic scaling function. The lowest order approximat
w( l )5 ỹ would introduce intoI ( ỹ ) and J( ỹ ) the behavior
l-

n-
er

n-

nst
l-

y
-

f

t

n

of F1 for large values of the argumentw and would lead to
a decrease to zero for both nonasymptotic scaling functio
The correct solution of the matching condition prohibits th
decrease and the reduced attenuation reaches a con
value~the same as the asymptotic scaling function! for large
values of ỹ and y, respectively. As a consequence of t
noniterative solution of the matching condition this appro
mation does not lead to the correct frequency behavior in
limit t→0 since l 5v1/4tnxl/4 in the limit ỹ→`. Thus the
temperature dependence of the sound attenuation and s
velocity does not drop out in this limit and the frequen
dependence is the same as in the Van Hove theory (z54).
Nevertheless one may represent the data over a certain r
of ỹ by such an approximative scaling function. In fact
turns out that the differences in the scaling functions plot
in the experimental range are small.

In order to compare now the scaling functions with t
data of 3He @12# we have to fix the scale of the frequenc
axis and of the ordinate. The relation of our nonasympto
scaled frequency to the scaled frequency used in@12# is
given by the choice ofv! of that paper, which is according
to Eq. ~2.5!,

v!5
v

2DT~ t !j22~ t !
5

ỹ

12 f t
2~ t !/16

. ~6.9!

One may replacef t by its fixed point value leading to a
denominator of 0.93. However, the thermal conductiv
used to fix the scale in@12# does not represent the data me
sured later@35# ~see dot-dashed curve in Fig. 8!. Therefore
we shifted the reduced attenuation along theỹ axis to get
agreement with our frequency scale@41#. A check of consis-
tency is the plot of the reduced dispersion for which the sa
ỹ scale has been used. An additional shift along the ordin
has been performed in the reduced dispersion in orde
normalize to our function. Excellent agreement is reach
where expected~see Fig. 15!. We also plot the correspondin
asymptotic scaling functions. The differences show the
certainty within the theory. The nonasymptotic scaling p
of the data has recently compared with an asymptotic ca
lation toO(«2) @11# and qualitative similar results have bee
obtained.

The same remarks apply to the4He @25# ~reanalyzed in
@12#! and included in Fig. 15. The conclusion is that nona
ymptotic effects are less pronounced seen in this dou
logarithmic scaling plots but our detailed analysis of Sec
shows that consistency of the description forall hydrody-
namic transport coefficients is possible within a nonasym
totic renormalization group theory only.

The nonasymptotic scaling function takes into acco
only nonasymptotic effects in the frequency scale; it negle
similar effects in the couplinggq

2/aq by using the fixed point
value for this coupling. These effects in the coupling are s
most directly atTc , where the attenuation in one waveleng
Eq. ~6.4! reaches a finite universal value for small freque
cies. At finite frequencies a nonuniversal value is obser
and this value was related to the non-asymptotic behavio
the specific heatCV(t) by Bhattacharjee and Ferrell@10#. In
our theory this effect is of the same physical origin and



h

in

w
i

en
fo
t
w
f

its
t
r

en

e-
re
en-
as
-

and
rth-
n

be
r-

f
wo

uid

x-
ter

w
the

or-

n-

in
r
us

d-

-

ncy

rom

718 57R. FOLK AND G. MOSER
lated to the deviation of the static couplinggq
2/aq , shown in

Fig. 3, from its fixed point valuegq
!2/aq . From Eq.~3.15!

we calculate the ratio of the attenuation in one wavelengt
finite frequency to the value at zero frequency atTc :

al

~al!c
5

gq
2~x!

gq
!2

11~gq
!2/4aq!ln2

11@gq
2~x!/4aq# ln2

, ~6.10!

wherex is the effective temperature distance correspond
to the finite limiting value of the flow parameterl c given in
~I.71! and where we have used~I.7.7!. We take forgq

!2/aq

the experimental value 0.311 from Fig. 3. Figure 16 sho
our result in comparison to the experimental values given
@10#. The nonasymptotics of the specific heat in@10# was
characterized by the background noncritical contributionB;
in our theory the whole experimental temperature dep
dence enters directly leading to a characteristic curve
each liquid. The steeper the decrease of the specific hea~or
compressibility! the stronger the increase of the curve. Ho
ever, we expect a saturation or bending over of the curves
larger values ofx when the specific heat crosses over to
background value. Thus an improvement in agreemen
least from this side is to expected, e.g., for Xe by mo
accurate measurements of the specific heat or zero frequ
sound velocity.

FIG. 15. Reduced sound attenuationI ( ỹ ) and reduced disper

sionJ( ỹ ) as function of the nonasymptotic scaled frequencyỹ . The
asymptotic scaling function~full line! uses the solution~6.2! in
~6.3! and the nonasymptotic scaling function~dashed line! the ap-
proximation~6.6! in ~6.8!.
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VII. CONCLUSION

We have performed a detailed analysis of the critical b
havior of the hydrodynamic transport coefficients in a pu
liquid. The nonuniversal nonasymptotic temperature dep
dence of the shear viscosity and/or thermal conductivity h
been fully taken into account in the prediction of the tem
perature and frequency dependence of the sound velocity
sound attenuation. Refinements of the analysis are wo
while and possible.~i! One needs more detailed informatio
on the experimental side~i! on the correlation length~espe-
cially the crossover to a constant background value would
of interest!, ~ii ! more accurate information on the static the
modynamic derivatives, and~iii ! more complete sets o
transport coefficients. The theory can be improved by a t
loop calculation of the amplitude functions~however, not all
integrals seem to be calculable analytically; see, e.g.,@11#!
and extended to the ordered phase~this would, e.g., make
possible the prediction of the sound attenuation in the liq
and/or vapor phase!.

A similar analysis is possible and in preparation in mi
tures. However, it includes an additional dynamic parame
~a certain ratio of Onsager coefficients! because of the addi-
tional equation for the concentration fluctuation. This ne
dynamic parameter governs the critical enhancement of
thermal conductivity at zero mass current and is of imp
tance in the nonasymptotic region@31,42#. It also enters the
frequency scale of the sound mode.

Note added in proof. The asymptotic theory has been co
sidered recently by A. Onuki@Phys. Rev. E55, 403 ~1997!#.
A comparison of our and Onuki’s theory with sound data
3He and 4He will be published by A. Kogan and H. Meye
in J. Low Temp. Phys. We thank the authors for sending
a preprint.

ACKNOWLEDGMENT

We thank H. Meyer for helpful discussions and for sen
ing us his experimental data.

FIG. 16. The enhancement of the nonasymptotic high freque
attenuation in one wavelength atTc for several fluids and different
static input as function of scaled frequency. The data are taken f
Ref. @10#.
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